Advertisement

Planar Structure Matching under Projective Uncertainty for Geolocation

  • Ang Li
  • Vlad I. Morariu
  • Larry S. Davis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8695)

Abstract

Image based geolocation aims to answer the question: where was this ground photograph taken? We present an approach to geolocalating a single image based on matching human delineated line segments in the ground image to automatically detected line segments in ortho images. Our approach is based on distance transform matching. By observing that the uncertainty of line segments is non-linearly amplified by projective transformations, we develop an uncertainty based representation and incorporate it into a geometric matching framework. We show that our approach is able to rule out a considerable portion of false candidate regions even in a database composed of geographic areas with similar visual appearances.

Keywords

uncertainty modeling geometric matching line segments 

References

  1. 1.
    Baatz, G., Saurer, O., Köser, K., Pollefeys, M.: Large scale visual geo-localization of images in mountainous terrain. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 517–530. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-33709-3_37 CrossRefGoogle Scholar
  2. 2.
    Bansal, M., Sawhney, H.S., Cheng, H., Daniilidis, K.: Geo-localization of street views with aerial image databases. In: ACM Int’l Conf. Multimedia (MM), pp. 1125–1128 (2011), http://doi.acm.org/10.1145/2072298.2071954
  3. 3.
    Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and chamfer matching: Two new techniques for image matching. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence, IJCAI 1977, vol. 2, pp. 659–663. Morgan Kaufmann Publishers Inc., San Francisco (1977), http://dl.acm.org/citation.cfm?id=1622943.1622971 Google Scholar
  4. 4.
    Bay, H., Ferrari, V., Van Gool, L.: Wide-baseline stereo matching with line segments. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 329–336 (June 2005)Google Scholar
  5. 5.
    Chen, D., Baatz, G., Koser, K., Tsai, S., Vedantham, R., Pylvanainen, T., Roimela, K., Chen, X., Bach, J., Pollefeys, M., Girod, B., Grzeszczuk, R.: City-scale landmark identification on mobile devices. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 737–744 (November 2011)Google Scholar
  6. 6.
    Elgammal, A., Shet, V., Yacoob, Y., Davis, L.: Exemplar-based tracking and recognition of arm gestures. In: Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, ISPA 2003, vol. 2, pp. 656–661 (September 2003)Google Scholar
  7. 7.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Theory of Computing 8(19), 415–428 (2012), http://www.theoryofcomputing.org/articles/v008a019 CrossRefMathSciNetGoogle Scholar
  8. 8.
    von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: Lsd: A fast line segment detector with a false detection control. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI) 32(4), 722–732 (2010)CrossRefGoogle Scholar
  9. 9.
    Hays, J., Efros, A.A.: im2gps: estimating geographic information from a single image. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (2008)Google Scholar
  10. 10.
    Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From structure-from-motion point clouds to fast location recognition. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 2599–2606 (June 2009)Google Scholar
  11. 11.
    Kim, H., Lee, S.: Wide-baseline image matching based on coplanar line intersections. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1157–1164 (October 2010)Google Scholar
  12. 12.
    Li, Y., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide pose estimation using 3D point clouds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 15–29. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-33718-5_2 CrossRefGoogle Scholar
  13. 13.
    Li, Y., Snavely, N., Huttenlocher, D.P.: Location recognition using prioritized feature matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 791–804. Springer, Heidelberg (2010), http://dl.acm.org/citation.cfm?id=1888028.1888088 CrossRefGoogle Scholar
  14. 14.
    Lin, T.Y., Belongie, S., Hays, J.: Cross-view image geolocalization. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR). Portland, OR (June 2013)Google Scholar
  15. 15.
    Liu, M.Y., Tuzel, O., Veeraraghavan, A., Chellappa, R.: Fast directional chamfer matching. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  16. 16.
    Matei, B., Vander Valk, N., Zhu, Z., Cheng, H., Sawhney, H.: Image to lidar matching for geotagging in urban environments. In: IEEE Workshop on Applications of Computer Vision (WACV), pp. 413–420 (January 2013)Google Scholar
  17. 17.
    Olson, C.: A probabilistic formulation for hausdorff matching. In: Proceedings of 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 150–156 (June 1998)Google Scholar
  18. 18.
    Sankaranarayanan, A.C., Chellappa, R.: Optimal multi-view fusion of object locations. In: Proceedings of the 2008 IEEE Workshop on Motion and Video Computing, WMVC 2008, pp. 1–8. IEEE Computer Society, Washington, DC (2008), http://dx.doi.org/10.1109/WMVC.2008.4544048 CrossRefGoogle Scholar
  19. 19.
    Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2d-to-3d matching. In: IEEE Int’l Conf. Computer Vision (ICCV), pp. 667–674 (November 2011)Google Scholar
  20. 20.
    Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1–7 (2007), http://www.cs.bath.ac.uk/brown/location/location.html
  21. 21.
    Schmid, C., Zisserman, A.: Automatic line matching across views. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR 1997), pp. 666–. IEEE Computer Society, Washington, DC (1997), http://dl.acm.org/citation.cfm?id=794189.794450
  22. 22.
    Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI) 30(7), 1270–1281 (2008)CrossRefGoogle Scholar
  23. 23.
    Wang, L., Neumann, U., You, S.: Wide-baseline image matching using line signatures. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1311–1318 (September 2009)Google Scholar
  24. 24.
    Zamir, A., Shah, M.: Image geo-localization based on multiple nearest neighbor feature matching using generalized graphs. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI) (2014)Google Scholar
  25. 25.
    Zheng, Y.T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.S., Neven, H.: Tour the world: Building a web-scale landmark recognition engine. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1085–1092 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ang Li
    • 1
  • Vlad I. Morariu
    • 1
  • Larry S. Davis
    • 1
  1. 1.University of MarylandCollege ParkUSA

Personalised recommendations