Persistent Reeb Graph Matching for Fast Brain Search

  • Yonggang Shi
  • Junning Li
  • Arthur W. Toga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8679)


In this paper we propose a novel algorithm for the efficient search of the most similar brains from a large collection of MR imaging data. The key idea is to compactly represent and quantify the differences of cortical surfaces in terms of their intrinsic geometry by comparing the Reeb graphs constructed from their Laplace-Beltrami eigenfunctions. To overcome the topological noise in the Reeb graphs, we develop a progressive pruning and matching algorithm based on the persistence of critical points. Given the Reeb graphs of two cortical surfaces, our method can calculate their distance in less than 10 milliseconds on a PC. In experimental results, we apply our method on a large collection of 1326 brains for searching, clustering, and automated labeling to demonstrate its value for the “Big Data” science in human neuroimaging.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mueller, S., Weiner, M., Thal, L., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s disease neuroimaging initiative. Clin. North Am. 15, 869–877, xi–xii (2005)Google Scholar
  2. 2.
    Essen, D.V., Ugurbil, K., et al.: The human connectome project: A data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)CrossRefGoogle Scholar
  3. 3.
    Toga, A., Clark, K., Thompson, P., Shattuck, D., Van Horn, J.: Mapping the human connectome. Neurosurgery 71(1), 1–5 (2012)CrossRefGoogle Scholar
  4. 4.
    Van Horn, J.D., Toga, A.: Human neuroimaging as a “Big Data” science. Brain Imaging and Behavior, 1–9 (2013)Google Scholar
  5. 5.
    Reuter, M., Wolter, F.E., Shenton, M., Niethammer, M.: Laplace-beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Computer-Aided Design 41(10), 739–755 (2009)CrossRefGoogle Scholar
  6. 6.
    Shi, Y., Lai, R., Toga, A.: Cortical surface reconstruction via unified Reeb analysis of geometric and topological outliers in magnetic resonance images. IEEE Trans. Med. Imag. (3), 511–530 (2013)Google Scholar
  7. 7.
    Edelsbrunner, Letscher, Zomorodian: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Lee, H., Kang, H., Chung, M., Kim, B.N., Lee, D.S.: Persistent brain network homology from the perspective of dendrogram. IEEE Trans. Med. Imag. 31(12), 2267–2277 (2012)CrossRefGoogle Scholar
  9. 9.
    Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In: Proc. Eurograph. Symp. on Geo. Process., pp. 225–233 (2007)Google Scholar
  10. 10.
    Shi, Y., Lai, R., Toga, A.W.: Conformal mapping via metric optimization with application for cortical label fusion. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 244–255. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Reeb, G.: Sur les points singuliers d’une forme de Pfaff completement integrable ou d’une fonction nemérique. Comptes Rendus Acad. Sciences 222, 847–849 (1946)MATHMathSciNetGoogle Scholar
  12. 12.
    Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Frontiers in Neuroscience 6(171) (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yonggang Shi
    • 1
  • Junning Li
    • 1
  • Arthur W. Toga
    • 1
  1. 1.Laboratory of Neuro Imaging (LONI), Institute for Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaUSA

Personalised recommendations