Advertisement

Deformation Field Correction for Spatial Normalization of PET Images Using a Population-Derived Partial Least Squares Model

  • Murat Bilgel
  • Aaron Carass
  • Susan M. Resnick
  • Dean F. Wong
  • Jerry L. Prince
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8679)

Abstract

Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet work on anatomically accurate PET-to-PET registration is limited. We present a method for the spatial normalization of PET images that improves their anatomical alignment based on a deformation correction model learned from structural image registration. To generate the model, we first create a population-based PET template with a corresponding structural image template. We register each PET image onto the PET template using deformable registration that consists of an affine step followed by a diffeomorphic mapping. Constraining the affine step to be the same as that obtained from the PET registration, we find the diffeomorphic mapping that will align the structural image with the structural template. We train partial least squares (PLS) regression models within small neighborhoods to relate the PET intensities and deformation fields obtained from the diffeomorphic mapping to the structural image deformation fields. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation based evaluation on 79 subjects shows that our method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations.

Keywords

PET registration deformation field partial least squares 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2008)CrossRefGoogle Scholar
  2. 2.
    Avants, B.B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre, J., Gee, J.C.: The optimal template effect in hippocampus studies of diseased populations. NeuroImage 49(3), 2457–2466 (2010)CrossRefGoogle Scholar
  3. 3.
    Bieth, M., Reader, A.J., Siddiqi, K.: Atlas construction for dynamic (4D) PET using diffeomorphic transformations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 35–42. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Carass, A., Cuzzocreo, J., Wheeler, M.B., Bazin, P.L., Resnick, S.M., Prince, J.L.: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis. NeuroImage 56(4), 1982–1992 (2011)CrossRefGoogle Scholar
  5. 5.
    Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006)CrossRefGoogle Scholar
  6. 6.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  7. 7.
    Fripp, J., Bourgeat, P., Acosta, O., Jones, G., Villemagne, V., Ourselin, S., Rowe, C., Salvado, O.: Generative atlases and atlas selection for C11-PIB PET-PET registration of elderly, mild cognitive impaired and Alzheimer disease patients. In: ISBI 2008, pp. 1155–1158 (2008)Google Scholar
  8. 8.
    Fripp, J., et al.: MR-less high dimensional spatial normalization of 11C PiB PET images on a population of elderly, mild cognitive impaired and alzheimer disease patients. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 442–449. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Lundqvist, R., Lilja, J., Thomas, B.A., Lötjönen, J., Villemagne, V.L., Rowe, C.C., Thurfjell, L.: Implementation and validation of an adaptive template registration method for 18F-flutemetamol imaging data. Journal of Nuclear Medicine 54(8), 1472–1478 (2013)CrossRefGoogle Scholar
  10. 10.
    Rosipal, R., Krämer, N.: Overview and recent advances in partial least squares. In: Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J. (eds.) SLSFS 2005. LNCS, vol. 3940, pp. 34–51. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. TMI 17(1), 87–97 (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Murat Bilgel
    • 1
    • 2
  • Aaron Carass
    • 1
  • Susan M. Resnick
    • 2
  • Dean F. Wong
    • 3
  • Jerry L. Prince
    • 1
    • 3
  1. 1.Image Analysis and Communications Lab.Johns Hopkins UniversityUSA
  2. 2.Lab. of Behavioral NeuroscienceNational Institute on Aging, NIHUSA
  3. 3.Dept. of RadiologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations