Advertisement

Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information

  • Subrahmanyam Gorthi
  • Alireza Akhondi-Asl
  • Jean-Philippe Thiran
  • Simon K. Warfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8679)

Abstract

In many medical imaging applications, merging segmentations obtained from multiple reference images (i.e., templates) has become a standard practice for improving the accuracy as well as reliability. Simultaneous Truth And Performance Level Estimation (STAPLE) is a widely used fusion algorithm that simultaneously estimates both performance parameters for each template, and the output segmentation; a more accurate estimation of performance parameters consequently results in more accurate output segmentations. In this paper, we propose a new approach for learning prior knowledge about the performance parameters of each template, and for incorporating it into the Maximum-a-Posteriori (MAP) formulation of the STAPLE, so that more accurate output segmentations can be obtained. More specifically, we propose a new approach to learn, for each structure to be segmented, the relationships between the performance parameters (viz. sensitivity and specificity) and the intensity similarities; we also propose a methodology for transferring this prior knowledge about the performance parameters into the STAPLE algorithm through optimal setting of the MAP parameters. The proposed approach is evaluated for the segmentation of structures in the brain MR images. These experiments have clearly demonstrated the advantages of incorporating such prior knowledge.

Keywords

Medical Imaging Segmentation Atlas-based Segmentation Label Fusion STAPLE MAP Formulation MRI Brain Lateral Ventricles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging 23(7), 903–921 (2004)CrossRefGoogle Scholar
  2. 2.
    Akhondi-Asl, A., Warfield, S.: Simultaneous truth and performance level estimation through fusion of probabilistic segmentations. IEEE Transactions on Medical Imaging 32(10), 1840–1852 (2013)CrossRefGoogle Scholar
  3. 3.
    Asman, A., Landman, B.: Formulating spatially varying performance in the statistical fusion framework. IEEE Transactions on Medical Imaging 31(6), 1326–1336 (2012)CrossRefGoogle Scholar
  4. 4.
    Artaechevarria, X., Munoz-Barrutia, A.: Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE Transactions on Medical Imaging 28(8), 1266–1277 (2009)CrossRefGoogle Scholar
  5. 5.
    Sabuncu, M., Yeo, B., Van Leemput, K., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE Transactions on Medical Imaging 29(99), 1714–1729 (2010)CrossRefGoogle Scholar
  6. 6.
    Wang, H., Suh, J., Das, S., Pluta, J., Craige, C., Yushkevich, P.: Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(3), 611–623 (2013)CrossRefGoogle Scholar
  7. 7.
    Gorthi, S., Bach Cuadra, M., Tercier, P.A., Allal, A., Thiran, J.P.: Weighted shape-based averaging with neighborhood prior model for multiple atlas fusion-based medical image segmentation. IEEE Signal Processing Letters 20(11), 1034–1037 (2013)CrossRefGoogle Scholar
  8. 8.
    Cardoso, M., Leung, K., Modat, M., Barnes, J., Ourselin, S.: Locally ranked STAPLE for template based segmentation propagation. In: Workshop on Multi-Atlas Labeling and Statistical Fusion (2011)Google Scholar
  9. 9.
    Commowick, O., Warfield, S.K.: Incorporating priors on expert performance parameters for segmentation validation and label fusion: A maximum a posteriori STAPLE. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 25–32. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Commowick, O., Akhondi-Asl, A., Warfield, S.K.: Estimating a reference standard segmentation with spatially varying performance parameters: Local MAP STAPLE. IEEE Transactions on Medical Imaging 31(8), 1593–1606 (2012)CrossRefGoogle Scholar
  11. 11.
    AbouRizk, S.M., Halpin, D.W., Wilson, J.R.: Visual interactive fitting of beta distributions. Journal of Construction Engineering and Management 117(4), 589–605 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Subrahmanyam Gorthi
    • 1
  • Alireza Akhondi-Asl
    • 1
  • Jean-Philippe Thiran
    • 2
  • Simon K. Warfield
    • 1
  1. 1.Computational Radiology LaboratoryBoston Children’s Hospital, and Harvard Medical SchoolBostonUSA
  2. 2.Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), and Department of RadiologyUniversity Hospital Center (CHUV), and University of Lausanne (UNIL)LausanneSwitzerland

Personalised recommendations