Advertisement

Comparing Salient Object Detection Results without Ground Truth

  • Long Mai
  • Feng Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8691)

Abstract

A wide variety of methods have been developed to approach the problem of salient object detection. The performance of these methods is often image-dependent. This paper aims to develop a method that is able to select for an input image the best salient object detection result from many results produced by different methods. This is a challenging task as different salient object detection results need to be compared without any ground truth. This paper addresses this challenge by designing a range of features to measure the quality of salient object detection results. These features are then used in various machine learning algorithms to rank different salient object detection results. Our experiments show that our method is promising for ranking salient object detection results and our method is also able to pick the best salient object detection result such that the overall salient object detection performance is better than each individual method.

Keywords

Input Image Salient Object Salient Region Saliency Detection Visual Saliency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  2. 2.
    Borji, A., Sihite, D.N., Itti, L.: Salient object detection: A benchmark. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 414–429. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bulling, A., Alt, F., Schmidt, A.: Increasing the security of gaze-based cued-recall graphical passwords using saliency masks. In: SIGCHI International Conference on Human Factors in Computing Systems (2012)Google Scholar
  5. 5.
    Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: From pairwise approach to listwise approach. In: International Conference on Machine Learning (2007)Google Scholar
  6. 6.
    Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)Google Scholar
  7. 7.
    Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: IEEE International Conference on Computer Vision (2013)Google Scholar
  8. 8.
    Cheng, M., Zhang, G., Mitra, N.J., Huang, X., Hu, S.: Global contrast based salient region detection. In: IEEE CVPR (2011)Google Scholar
  9. 9.
    Christopoulos, C., Skodras, A., Ebrahimi, T.: The jpeg2000 still image coding system: An overview. IEEE Trans. on Consumer Electronics 46(4), 1103–1127 (2000)CrossRefGoogle Scholar
  10. 10.
    Cohen, Y., Basri, R.: Inferring region salience from binary and gray-level images. Pattern Recognition 36, 2349–2362 (2003)CrossRefGoogle Scholar
  11. 11.
    Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: IEEE International Conference on Computer Vision (2013)Google Scholar
  12. 12.
    Fürnkranz, J., Hüllermeier, E.: Pairwise preference learning and ranking. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 145–156. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Gao, D., Vasconcelos, N.: Bottom-up saliency is a discriminant process. In: IEEE International Conference on Computer Vision (2007)Google Scholar
  14. 14.
    Goferman, S., Zelnik-manor, L., Tal, A.: Context-aware saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  15. 15.
    Hall, D., Leibe, B., Schiele, B.: Saliency of interest points under scale changes. In: British Machine Vision Conference (2002)Google Scholar
  16. 16.
    Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS, pp. 545–552 (2006)Google Scholar
  17. 17.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River (1998)Google Scholar
  18. 18.
    Holtzman-gazit, M., Zelnik-manor, L., Yavneh, I.: Salient edges: A multi scale approach. In: European Conference on Computer Vision Workshop on Vision for Cognitive Tasks (2010)Google Scholar
  19. 19.
    Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  20. 20.
    Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artificial Intelligence 172(16-17), 1897–1916 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Itti, L., Koch, C.: Computational modeling of visual attention. Nature Reviews Neuroscience 2, 194–203 (2001)CrossRefGoogle Scholar
  22. 22.
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)CrossRefGoogle Scholar
  23. 23.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998)CrossRefGoogle Scholar
  24. 24.
    Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: IEEE International Conference on Computer Vision (2013)Google Scholar
  25. 25.
    Jiang, Z., Davis, L.S.: Submodular Salient Region Detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  26. 26.
    Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: IEEE International Conference on Computer Vision (2009)Google Scholar
  27. 27.
    Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Li, X., Li, Y., Shen, C., Dick, A., Hengel, A.V.D.: Contextual hypergraph modeling for salient object detection. In: IEEE International Conference on Computer Vision (2013)Google Scholar
  29. 29.
    Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and sparse reconstruction. In: IEEE International Conference on Computer Vision (2013)Google Scholar
  30. 30.
    Liu, F., Gleicher, M.: Region enhanced scale-invariant saliency detection. In: 2006 IEEE International Conference on Multimedia and Expo (2006)Google Scholar
  31. 31.
    Liu, T., Sun, J., Zheng, N.N., Tang, X., Shum, H.Y.: Learning to detect a salient object. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  32. 32.
    Liu, Y., Wang, J., Cho, S., Finkelstein, A., Rusinkiewicz, S.: A no-reference metric for evaluating the quality of motion deblurring. ACM Trans. Graph. 32(6), 175:1–175:12 (2013), http://doi.acm.org/10.1145/2508363.2508391
  33. 33.
    Mai, L., Niu, Y., Liu, F.: Saliency aggregation: A data-driven approach. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  34. 34.
    Marchesotti, L., Cifarelli, C., Csurka, G.: A framework for visual saliency detection with applications to image thumbnailing. In: IEEE International Conference on Computer Vision (2009)Google Scholar
  35. 35.
    Margolin, R., Zelnik-Manor, L., Tal, A.: Saliency for image manipulation. The Visual Computer, 1–12 (2012)Google Scholar
  36. 36.
    Ming, Y., Li, H., He, X.: Winding number for region-boundary consistent salient contour extraction. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  37. 37.
    Niu, Y., Geng, Y., Li, X., Liu, F.: Leveraging stereopsis for saliency analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  38. 38.
    Oikonomopoulos, A., Patras, I., Pantic, M.: Spatiotemporal salient points for visual recognition of human actions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36(3), 710–719 (2005)CrossRefGoogle Scholar
  39. 39.
    Parikh, D., Zitnick, C.L., Chen, T.: Determining patch saliency using low-level context. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 446–459. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  40. 40.
    Perazzi, F., Krhenbl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast based filtering for salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  41. 41.
    Ramanathan, S., Katti, H., Sebe, N., Kankanhalli, M., Chua, T.-S.: An eye fixation database for saliency detection in images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 30–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  42. 42.
    Rubinstein, M., Gutierrez, D., Sorkine, O., Shamir, A.: A comparative study of image retargeting. ACM Trans. Graph. 29, 160:1–160:10 (2010)Google Scholar
  43. 43.
    Rudoy, D., Goldman, D.B., Shechtman, E., Zelnik-Manor, L.: Learning video saliency from human gaze using candidate selection. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  44. 44.
    Rutishauser, U., Walther, D., Koch, C., Perona, P.: Is bottom-up attention useful for object recognition (2004)Google Scholar
  45. 45.
    Sheikh, H., Bovik, A., Cormack, L.: No-reference quality assessment using natural scene statistics: Jpeg2000. IEEE Transactions on Image Processing 14(11), 1918–1927 (2005)CrossRefGoogle Scholar
  46. 46.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (1997)Google Scholar
  47. 47.
    Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York, Inc., New York (1995)CrossRefzbMATHGoogle Scholar
  48. 48.
    Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. (1), pp. 511–518 (2001)Google Scholar
  49. 49.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  50. 50.
    Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  51. 51.
    Wu, C., Frahm, J.-M., Pollefeys, M.: Detecting large repetitive structures with salient boundaries. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 142–155. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  52. 52.
    Xie, Y., Lu, H., Yang, M.H.: Bayesian saliency via low and mid level cues. IEEE Transactions on Image Processing 22(5), 1689–1698 (2013)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  54. 54.
    Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  55. 55.
    Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM Multimedia (2006)Google Scholar
  56. 56.
    Zhao, R., Ouyang, W., Wang, X.: Person re-identification by salience matching. In: IEEE International Conference on Computer Vision (2013)Google Scholar
  57. 57.
    Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Long Mai
    • 1
  • Feng Liu
    • 1
  1. 1.Department of Computer SciencePortland State UniversityUSA

Personalised recommendations