Rolling Guidance Filter

  • Qi Zhang
  • Xiaoyong Shen
  • Li Xu
  • Jiaya Jia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8691)


Images contain many levels of important structures and edges. Compared to masses of research to make filters edge preserving, finding scale-aware local operations was seldom addressed in a practical way, albeit similarly vital in image processing and computer vision. We propose a new framework to filter images with the complete control of detail smoothing under a scale measure. It is based on a rolling guidance implemented in an iterative manner that converges quickly. Our method is simple in implementation, easy to understand, fully extensible to accommodate various data operations, and fast to produce results. Our implementation achieves realtime performance and produces artifact-free results in separating different scale structures. This filter also introduces several inspiring properties different from previous edge-preserving ones.


Image filter scale-aware processing edge preserving 


  1. 1.
    Adams, A., Baek, J., Davis, M.A.: Fast high-dimensional filtering using the permutohedral lattice. Comput. Graph. Forum 29(2), 753–762 (2010)CrossRefGoogle Scholar
  2. 2.
    Adams, A., Gelfand, N., Dolson, J., Levoy, M.: Gaussian kd-trees for fast high-dimensional filtering. ACM Transactions on Graphics (TOG) 28(3), 21 (2009)CrossRefGoogle Scholar
  3. 3.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(5), 898–916 (2011)CrossRefGoogle Scholar
  4. 4.
    Bao, L., Song, Y., Yang, Q., Yuan, H., Wang, G.: Tree filtering: Efficient structure-preserving smoothing with a minimum spanning tree. IEEE Transactions on Image Processing 23(2), 555–569 (2014)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Brox, T., Cremers, D.: Iterated nonlocal means for texture restoration. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 13–24. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. 26(3), 103 (2007)CrossRefGoogle Scholar
  7. 7.
    Criminisi, A., Sharp, T., Rother, C., Perez, P.: Geodesic image and video editing. ACM Trans. Graph. 29(5), 134 (2010)CrossRefGoogle Scholar
  8. 8.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics (TOG) 21(3), 257–266 (2002)CrossRefGoogle Scholar
  9. 9.
    Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3) (2008)Google Scholar
  10. 10.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  11. 11.
    Gastal, E.S., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM Transactions on Graphics (TOG) 30(4), 69 (2011)CrossRefGoogle Scholar
  12. 12.
    Gastal, E.S., Oliveira, M.M.: Adaptive manifolds for real-time high-dimensional filtering. ACM Transactions on Graphics (TOG) 31(4), 33 (2012)CrossRefGoogle Scholar
  13. 13.
    He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Karacan, L., Erdem, E., Erdem, A.: Structure-preserving image smoothing via region covariances. ACM Transactions on Graphics (TOG) 32(6), 176 (2013)CrossRefGoogle Scholar
  15. 15.
    Kass, M., Solomon, J.: Smoothed local histogram filters. ACM Transactions on Graphics (TOG) 29(4), 100 (2010)CrossRefGoogle Scholar
  16. 16.
    Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. 26(3), 96 (2007)CrossRefGoogle Scholar
  17. 17.
    Lindeberg, T.: Scale-space theory: A basic tool for analyzing structures at different scales. Journal of Applied Statistics 21(1-2), 225–270 (1994)CrossRefGoogle Scholar
  18. 18.
    Ma, Z., He, K., Wei, Y., Sun, J., Wu, E.: Constant time weighted median filtering for stereo matching and beyond. In: IEEE ICCV (2013)Google Scholar
  19. 19.
    Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 568–580. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  21. 21.
    Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Transactions on Graphics (TOG) 23(3), 664–672 (2004)CrossRefGoogle Scholar
  22. 22.
    Porikli, F.: Constant time o (1) bilateral filtering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)Google Scholar
  23. 23.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)CrossRefzbMATHGoogle Scholar
  24. 24.
    Su, Z., Luo, X., Deng, Z., Liang, Y., Ji, Z.: Edge-preserving texture suppression filter based on joint filtering schemes. IEEE Transactions on Multimedia 15(3), 535–548 (2013)CrossRefGoogle Scholar
  25. 25.
    Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. ACM Transactions on Graphics (TOG) 28(5), 147 (2009)CrossRefGoogle Scholar
  26. 26.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision (ICCV), pp. 839–846. IEEE (1998)Google Scholar
  27. 27.
    van de Weijer, J., Van den Boomgaard, R.: Local mode filtering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. II–428 (2001)Google Scholar
  28. 28.
    Weiss, B.: Fast median and bilateral filtering. ACM Trans. Graph. 25(3), 519–526 (2006)CrossRefGoogle Scholar
  29. 29.
    Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via l 0 gradient minimization. ACM Transactions on Graphics (TOG) 30(6), 174 (2011)Google Scholar
  30. 30.
    Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Transactions on Graphics (TOG) 31(6), 139 (2012)Google Scholar
  31. 31.
    Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1155–1162 (2013)Google Scholar
  32. 32.
    Yang, Q.: Recursive bilateral filtering. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 399–413. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Yang, Q., Tan, K.H., Ahuja, N.: Real-time o(1) bilateral filtering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 557–564 (2009)Google Scholar
  34. 34.
    Zhang, Q., Xu, L., Jia, J.: 100+ times faster weighted median filter. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Qi Zhang
    • 1
  • Xiaoyong Shen
    • 1
  • Li Xu
    • 2
  • Jiaya Jia
    • 1
  1. 1.The Chinese University of Hong KongHong Kong
  2. 2.Image & Visual Computing LabLenovo R&THong Kong

Personalised recommendations