Robust Global Translations with 1DSfM

  • Kyle Wilson
  • Noah Snavely
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8691)


We present a simple, effective method for solving structure from motion problems by averaging epipolar geometries. Based on recent successes in solving for global camera rotations using averaging schemes, we focus on the problem of solving for 3D camera translations given a network of noisy pairwise camera translation directions (or 3D point observations). To do this well, we have two main insights. First, we propose a method for removing outliers from problem instances by solving simpler low-dimensional subproblems, which we refer to as 1DSfM problems. Second, we present a simple, principled averaging scheme. We demonstrate this new method in the wild on Internet photo collections.


Structure from Motion translations problem robust estimation 


  1. 1.
    Agarwal, S., Mierle, K., et al.: Ceres solver,
  2. 2.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: ICCV (2009)Google Scholar
  3. 3.
    Arie-Nachimson, M., Shahar, S.Z., Kemelmacher-Shlizerman, I., Singer, A., Basri, R.: Global motion estimation from point matches. In: 3DIMPVT (2012)Google Scholar
  4. 4.
    Brand, M., Antone, M., Teller, S.: Spectral solution of large-scale extrinsic camera calibration as a graph embedding problem. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 262–273. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Chatterjee, A., Govindu, V.M.: Efficient and robust large-scale rotation averaging. In: ICCV (2013)Google Scholar
  6. 6.
    Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous optimization for large-scale structure from motion. In: CVPR (2011)Google Scholar
  7. 7.
    Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for the feedback arc set problem. In: Information Processing Letters (1993)Google Scholar
  8. 8.
    Enqvist, O., Kahl, F., Olsson, C.: Nonsequential structure from motion. In: OMNIVIS (2011)Google Scholar
  9. 9.
    Frahm, J.-M., et al.: Building Rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Fredriksson, J., Olsson, C.: Simultaneous multiple rotation averaging using Lagrangian duality. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 245–258. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Govindu, V.M.: Combining two-view constraints for motion estimation. In: CVPR (2001)Google Scholar
  12. 12.
    Govindu, V.M.: Lie-algebraic averaging for globally consistent motion estimation. In: CVPR (2004)Google Scholar
  13. 13.
    Hartley, R., Aftab, K., Trumpf, J.: L 1 rotation averaging using the Weiszfeld algorithm. In: CVPR (2011)Google Scholar
  14. 14.
    Jiang, N., Cui, Z., Tan, P.: A global linear method for camera pose registration. In: ICCV (2013)Google Scholar
  15. 15.
    Jiang, N., Tan, P., Cheong, L.: Seeing double without confusion: Structure-from-motion in highly ambiguous scenes. In: CVPR (2012)Google Scholar
  16. 16.
    Kahl, F.: Multiple view geometry and the L  ∞ -norm. In: ICCV (2005)Google Scholar
  17. 17.
    Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruction. In: CVPR (2007)Google Scholar
  18. 18.
    Sinha, S.N., Steedly, D., Szeliski, R.: A multi-stage linear approach to structure from motion. In: Kutulakos, K.N. (ed.) ECCV 2010 Workshops, Part II. LNCS, vol. 6554, pp. 267–281. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Snavely, N., Seitz, S., Szeliski, R.: Photo tourism: Exploring photo collections in 3D. In: SIGGRAPH (2006)Google Scholar
  20. 20.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: A factorization method. In: IJCV (1992)Google Scholar
  21. 21.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)Google Scholar
  22. 22.
    Wilson, K., Snavely, N.: Network principles for SfM: Disambiguating repeated structures with local context. In: ICCV (2013)Google Scholar
  23. 23.
    Zach, C., Klopschitz, M., Pollefeys, M.: Disambiguating visual relationships using loop constraints. In: CVPR (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kyle Wilson
    • 1
  • Noah Snavely
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations