Verification of Hybrid Systems

  • Laurent Doyen
  • Goran Frehse
  • George J. Pappas
  • André PlatzerEmail author


Hybrid systems are models which combine discrete and continuous behavior. They occur frequently in safety-critical applications in various domains such as health care, transportation, and robotics, as a result of interactions between a digital controller and a physical environment. They also have relevance in other areas such as systems biology, in which the discrete dynamics arises as an abstraction of fast continuous processes. One of the prominent models is that of hybrid automata, where differential equations are associated with each node, and jump constraints such as guards and resets are associated with each edge.

In this chapter, we focus on the problem of model checking of hybrid automata against reachability and invariance properties, enabling the verification of general temporal logic specifications. We review the main decidability results for hybrid automata, and since model checking is in general undecidable, we present three complementary analysis approaches based on symbolic representations, abstraction, and logic. In particular, we illustrate polyhedron-based reachability analysis, finite quotients, abstraction refinement techniques, and logic-based verification. We survey important tools and application domains of successful hybrid system verification in this vibrant area of research.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE (2012) Google Scholar
  2. 2.
    Althoff, M., Krogh, B.: Reachability analysis of nonlinear differential-algebraic systems. IEEE Trans. Autom. Control 59, 371–383 (2014) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Althoff, M., Krogh, B.H., Stursberg, O.: Analyzing reachability of linear dynamic systems with parametric uncertainties. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with Uncertainties. Springer, Heidelberg (2011) Google Scholar
  4. 4.
    Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 173–182. ACM, New York (2013) zbMATHGoogle Scholar
  5. 5.
    Althoff, M., Krogh, B.H.: Avoiding geometric intersection operations in reachability analysis of hybrid systems. In: Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control, pp. 45–54. ACM, New York (2012) zbMATHGoogle Scholar
  6. 6.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138, 3–34 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Alur, R.: Formal verification of hybrid systems. In: Chakraborty et al. [8, 34, 35, 91, 132], pp. 273–278 Google Scholar
  8. 8.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman et al. [31, 100, 113, 129, 149, 174–177], pp. 209–229 Google Scholar
  9. 9.
    Alur, R., Dang, T., Ivancic, F.: Counterexample-guided predicate abstraction of hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Alur, R., Dang, T., Ivancic, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006) zbMATHCrossRefGoogle Scholar
  11. 11.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000) CrossRefGoogle Scholar
  13. 13.
    Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded systems. IEEE Trans. Softw. Eng. 22(3), 181–201 (1996) CrossRefGoogle Scholar
  14. 14.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM Symposium on Theory of Computing, pp. 592–601 (1993) Google Scholar
  15. 15.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Domenica Di Benedetto, M., Sangiovanni-Vincentelli, A.L. (eds.) HSCC. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001) Google Scholar
  16. 16.
    Alur, R., Pappas, G.J. (eds.): Hybrid Systems: Computation and Control, Proceedings of the 7th International Workshop, HSCC 2004, Philadelphia, PA, USA, March 25–27, 2004. LNCS, vol. 2993. Springer, Heidelberg (2004) zbMATHGoogle Scholar
  17. 17.
    Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In: Alur and Pappas [24, 46, 53, 62, 101, 114, 164, 168], pp. 32–47 Google Scholar
  18. 18.
    Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Inform. 43(7), 451–476 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Asarin, E., Dang, T., Maler, O., Bournez, O.: Approximate reachability analysis of piecewise-linear dynamical systems. In: Proc. HSCC 00: Hybrid Systems—Computation and Control. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000) zbMATHCrossRefGoogle Scholar
  20. 20.
    Asarin, E., Dang, T., Maler, O., Testylier, R.: Using redundant constraints for refinement. In: Automated Technology for Verification and Analysis, pp. 37–51. Springer, Heidelberg (2010) zbMATHCrossRefGoogle Scholar
  21. 21.
    Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theor. Comput. Sci. 138(1), 35–65 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Almost-sure model checking of infinite paths in one-clock timed automata. In: Proc. of LICS, pp. 217–226. IEEE, Piscataway (2008) Google Scholar
  24. 24.
    Balluchi, A., Di Natale, F., Sangiovanni-Vincentelli, A.L., van Schuppen, J.H.: Synthesis for idle speed control of an automotive engine. In: Alur and Pappas [130, 182], pp. 80–94 Google Scholar
  25. 25.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Proc. of HSCC. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001) Google Scholar
  26. 26.
    Bemporad, A., Bicchi, A., Buttazzo, G. (eds.): Hybrid Systems: Computation and Control, Proceedings of the 10th International Conference, HSCC 2007, Pisa, Italy. LNCS, vol. 4416. Springer, Heidelberg (2007) zbMATHGoogle Scholar
  27. 27.
    Bemporad, A., Morari, M.: Verification of hybrid systems via mathematical programming. In: Vaandrager and van Schuppen [104], pp. 31–45 zbMATHCrossRefGoogle Scholar
  28. 28.
    Benerecetti, M., Faella, M., Minopoli, S.: Automatic synthesis of switching controllers for linear hybrid systems: safety control. Theor. Comput. Sci. 493, 116–138 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Bergstra, J.A., Middelburg, C.A.: Process algebra for hybrid systems. Theor. Comput. Sci. 335(2–3), 215–280 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Bicchi, A., Pallottino, L.: On optimal cooperative conflict resolution for air traffic management systems. IEEE Trans. Intell. Transp. Syst. 1(4), 221–231 (2000) CrossRefGoogle Scholar
  32. 32.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998) zbMATHCrossRefGoogle Scholar
  33. 33.
    Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor. Comput. Sci. 321(2–3), 291–345 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Branicky, M.S.: General hybrid dynamical systems: modeling, analysis, and control. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems, vol. 1066, pp. 186–200. Springer, Heidelberg (1995) Google Scholar
  35. 35.
    Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.: On reachability for hybrid automata over bounded time. In: Proceedings of ICALP 2011: International Colloquium on Automata, Languages and Programming (Part II). LNCS, vol. 6756, pp. 416–427. Springer, Heidelberg (2011) zbMATHGoogle Scholar
  37. 37.
    Bu, L., Li, Y., Wang, L., Li, X.: BACH: bounded reachability checker for linear hybrid automata. In: Formal Methods in Computer-Aided Design, 2008. FMCAD’08, pp. 1–4. IEEE, Piscataway (2008) Google Scholar
  38. 38.
    Buchberger, B.: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. PhD thesis, University of Innsbruck (1965) Google Scholar
  39. 39.
    Carloni, L.P., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.L.: Languages and tools for hybrid systems design. Found. Trends Electron. Des. Autom. 1(1/2), 1–193 (2006) zbMATHCrossRefGoogle Scholar
  40. 40.
    Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: CONCUR, pp. 138–152 (2000) Google Scholar
  41. 41.
    Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.): Proceedings of the 11th International Conference on Embedded Software, EMSOFT 2011, Part of the Seventh Embedded Systems Week, ESWeek 2011, Taipei, Taiwan, October 9–14, 2011. ACM, New York (2011) Google Scholar
  42. 42.
    Chase, C., Serrano, J., Ramadge, P.J.: Periodicity and chaos from switched flow systems: contrasting examples of discretely controlled continuous systems. IEEE Trans. Autom. Control 38(1), 70–83 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-linear hybrid systems. In: RTSS, pp. 183–192. IEEE, Piscataway (2012) Google Scholar
  44. 44.
    Chernikova, N.V.: Algorithm for discovering the set of all solutions of a linear programming problem. USSR Comput. Math. Math. Phys. 8(6), 282–293 (1968) zbMATHCrossRefGoogle Scholar
  45. 45.
    Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager and van Schuppen [8, 27, 29, 35, 52, 91, 118, 120, 131, 132, 134, 135, 143, 167, 179, 180], pp. 76–90 Google Scholar
  46. 46.
    Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Proc. of CAV 2000: Computer Aided Verification. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000) Google Scholar
  48. 48.
    Collet, P., Eckmann, J.P.: Iterated Maps on the Interval as Dynamical Systems, vol. 1. Springer, Heidelberg (1980) zbMATHGoogle Scholar
  49. 49.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Barkhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975) Google Scholar
  50. 50.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Collins, P.: Optimal semicomputable approximations to reachable and invariant sets. Theory Comput. Syst. 41(1), 33–48 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. J. Log. Algebraic Program. 62(2), 191–245 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Damm, W., Hungar, H., Olderog, E.-R.: Verification of cooperating traffic agents. Int. J. Control 79(5), 395–421 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Dang, T., Testylier, R.: Reachability analysis for polynomial dynamical systems using the Bernstein expansion. Reliab. Comput. 17(2), 128–152 (2012) MathSciNetGoogle Scholar
  55. 55.
    Dantzig, G.B., Eaves, B.C.: Fourier-Motzkin elimination and its dual. J. Comb. Theory 14, 288–297 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Darboux, J.-G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré. Bull. Sci. Math. Astron. 2(1), 151–200 (1878) zbMATHGoogle Scholar
  57. 57.
    De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. Form. Methods Syst. Des. 33(1–3), 45–84 (2008) zbMATHCrossRefGoogle Scholar
  58. 58.
    De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: from timed models to timed implementations. Form. Asp. Comput. 17(3), 319–341 (2005) zbMATHCrossRefGoogle Scholar
  59. 59.
    Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett. 102(5), 208–213 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of affine hybrid systems. In: Proc. of FORMATS 2005: Formal Modelling and Analysis of Timed Systems. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005) Google Scholar
  61. 61.
    Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using simulation. In: Formal Modeling and Analysis of Timed Systems, pp. 171–186. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  62. 62.
    Fehnker, A., Krogh, B.H.: Hybrid system verification is not a sinecure—the electronic throttle control case study. Int. J. Found. Comput. Sci. 17(4), 885–902 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4(1), 69–76 (1975) MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Fränzle, M.: Analysis of hybrid systems: an ounce of realism can save an infinity of states. In: CSL. LNCS, vol. 1683, pp. 126–140. Springer, Heidelberg (1999) Google Scholar
  65. 65.
    Frazzoli, E., Grosu, R. (eds.): Proceedings of the 14th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2011, Chicago, USA, April 12–14, 2011. ACM, New York (2011) Google Scholar
  66. 66.
    Frehse, G.: Compositional verification of hybrid systems using simulation relations. PhD thesis, Radboud Universiteit Nijmegen (October 2005) Google Scholar
  67. 67.
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Frehse, G., Le Guernic, C., Donzé, A., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806. Springer, Heidelberg (2011) Google Scholar
  69. 69.
    Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in space-time. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 203–212. ACM, New York (2013) zbMATHGoogle Scholar
  70. 70.
    Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verifying analog oscillator circuits using forward/backward abstraction refinement. In: Gielen, G.G.E. (ed.) DATE, pp. 257–262. European Design and Automation Association, Leuven (2006) Google Scholar
  71. 71.
    Freund, R.M., Orlin, J.B.: On the complexity of four polyhedral set containment problems. Math. Program. 33(2), 139–145 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) Automated Deduction, CADE-25. LNCS, vol. 9195, pp. 527–538. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  73. 73.
    Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS. LNCS, vol. 8413, pp. 279–294. Springer, Heidelberg (2014) Google Scholar
  74. 74.
    Ghosh, P.K., Kumar, K.V.: Support function representation of convex bodies, its application in geometric computing, and some related representations. Comput. Vis. Image Underst. 72(3), 379–403 (1998) CrossRefGoogle Scholar
  75. 75.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005) Google Scholar
  76. 76.
    Girard, A.: Controller synthesis for safety and reachability via approximate bisimulation. Automatica 48(5), 947–953 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006) Google Scholar
  78. 78.
    Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. IEEE Trans. Autom. Control 52(5), 782–798 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Girard, A., Zheng, G.: Verification of safety and liveness properties of metric transition systems. ACM Trans. Embed. Comput. Syst. 11(S2), 54 (2012) CrossRefGoogle Scholar
  80. 80.
    Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009) MathSciNetCrossRefGoogle Scholar
  81. 81.
    Greenstreet, M.R.: Verifying safety properties of differential equations. In: Computer Aided Verification. LNCS, vol. 1102, pp. 277–287. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  82. 82.
    Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.): Hybrid Systems. LNCS, vol. 736. Springer, Heidelberg (1993) Google Scholar
  83. 83.
    Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Bouajjani, A., Maler, O. (eds.) CAV. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009) Google Scholar
  84. 84.
    Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. (eds.) CAV. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008) Google Scholar
  85. 85.
    Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical, control, and hybrid systems. Theor. Comput. Sci. 342(2), 229–261 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of linear hybrid systems by means of convex approximations. In: International Static Analysis Symposium, SAS’94, Namur (1994) Google Scholar
  87. 87.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: the next generation. In: Proceedings of the 16th IEEE Real-Time Systems Symposium (RTSS ’95), p. 56. IEEE, Piscataway (1995) CrossRefGoogle Scholar
  88. 88.
    Henzinger, T.A.: Hybrid automata with finite bisimulations. In: ICALP: Automata, Languages, and Programming. LNCS, vol. 944, pp. 324–335. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  89. 89.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. Softw. Tools Technol. Transf. 1, 110–122 (1997) zbMATHCrossRefGoogle Scholar
  90. 90.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proceedings of the 29th Annual Symposium on Principles of Programming Languages, pp. 58–70. ACM, New York (2002) Google Scholar
  91. 91.
    Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems. NATO ASI Series F: Computer and Systems Sciences, vol. 170, pp. 265–292. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  92. 92.
    Henzinger, T.A., Ho, P.-H.: A note on abstract interpretation strategies for hybrid automata. In: Hybrid Systems II, pp. 252–264. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  93. 93.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Trans. Autom. Control 43, 540–554 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Henzinger, T.A., Kopke, P.W.: State equivalences for rectangular hybrid automata. In: CONCUR: Concurrency Theory. LNCS, vol. 1119, pp. 530–545. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  95. 95.
    Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theor. Comput. Sci. 221, 369–392 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57, 94–124 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Proc. of HSCC 00: Hybrid Systems—Computation and Control. LNCS, vol. 1790, pp. 145–159. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  98. 98.
    Henzinger, T.A., Wong-Toi, H.: Using HyTech to synthesize control parameters for a steam boiler. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) Formal Methods for Industrial Applications. LNCS, vol. 1165, pp. 265–282. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  99. 99.
    Ho, P.-H., Wong-Toi, H.: Automated analysis of an audio control protocol. In: Wolper, P. (ed.) CAV. LNCS, vol. 939, pp. 381–394. Springer, Heidelberg (1995) Google Scholar
  100. 100.
    Johnson, T.T., Mitra, S.: Parametrized verification of distributed cyber-physical systems: an aircraft landing protocol case study. In: ICCPS, pp. 161–170. IEEE, Piscataway (2012) Google Scholar
  101. 101.
    Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane changing and merging. PATH Research Report UCB-ITS-PRR-99-13, Institute of Transportation Studies, University of California, Berkeley (1999) Google Scholar
  102. 102.
    Agung Julius, A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test generation and coverage for hybrid systems. In: Hybrid Systems: Computation and Control, pp. 329–342. Springer, Heidelberg (2007) zbMATHCrossRefGoogle Scholar
  103. 103.
    Kim, K.-D., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial. Proc. IEEE 100, 1287–1308 (2012). Centennial-Issue CrossRefGoogle Scholar
  104. 104.
    Kouskoulas, Y., Renshaw, D.W., Platzer, A., Kazanzides, P.: Certifying the safe design of a virtual fixture control algorithm for a surgical robot. In: Belta, C., Ivancic, F. (eds.) HSCC, pp. 263–272. ACM, New York (2013) CrossRefGoogle Scholar
  105. 105.
    Kühn, W.: Rigorously computed orbits of dynamical systems without the wrapping effect. Computing 61(1), 47–67 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox (ET). In: 45th IEEE Conference on Decision and Control, pp. 1498–1503. IEEE, Piscataway (2006) CrossRefGoogle Scholar
  107. 107.
    Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal techniques for reachability analysis of discrete-time linear systems. IEEE Trans. Autom. Control 52(1), 26–38 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Math. Control Signals Syst. 13(1), 1–21 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous dynamics. PhD thesis, Université Grenoble 1, Joseph Fourier (2009) Google Scholar
  111. 111.
    Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems—A Cyber-Physical Systems Approach (2013). zbMATHGoogle Scholar
  112. 112.
    Lerda, F., Kapinski, J., Clarke, E.M., Krogh, B.H.: Verification of supervisory control software using state proximity and merging. In: Hybrid Systems: Computation and Control, pp. 344–357. Springer, Heidelberg (2008) zbMATHCrossRefGoogle Scholar
  113. 113.
    Livadas, C., Lygeros, J., Lynch, N.A.: High-level modeling and analysis of TCAS. Proc. IEEE 88(7), 926–947 (2000) CrossRefGoogle Scholar
  114. 114.
    Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now formally verified. In: Butler, M., Schulte, W. (eds.) FM. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011) Google Scholar
  115. 115.
    Loos, S.M., Witmer, D., Steenkiste, P., Platzer, A.: Efficiency analysis of formally verified adaptive cruise controllers. In: Hegyi, A., De Schutter, B. (eds.) ITSC. Springer, Heidelberg (2013) Google Scholar
  116. 116.
    Lotov, A.V., Bushenkov, V.A., Kamenev, G.K.: Interactive Decision Maps. Applied Optimization, vol. 89. Kluwer Academic, Boston (2004) zbMATHGoogle Scholar
  117. 117.
    Lunze, J., Lamnabhi-Lagarrigue, F.: Handbook of Hybrid Systems Control: Theory, Tools, Applications. Cambridge University Press, Cambridge (2009) zbMATHCrossRefGoogle Scholar
  118. 118.
    Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Inf. Comput. 185(1), 105–157 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Maler, O.: Algorithmic verification of continuous and hybrid systems. In: Int. Workshop on Verification of Infinite-State System (Infinity) (2013) Google Scholar
  120. 120.
    Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX Workshop, vol. 600, pp. 447–484. Springer, Heidelberg (1991) Google Scholar
  121. 121.
    Maler, O., Pnueli, A. (eds.): Hybrid Systems: Computation and Control, Proceedings of the 6th International Workshop, HSCC 2003, Prague, Czech Republic, April 3–5, 2003. LNCS, vol. 2623. Springer, Heidelberg (2003) zbMATHGoogle Scholar
  122. 122.
    Marwedel, P.: Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems. Springer, Heidelberg (2010) zbMATHGoogle Scholar
  123. 123.
    Matringe, N., Vieira Moura, A., Rebiha, R.: Generating invariants for non-linear hybrid systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010) Google Scholar
  124. 124.
    Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Proc. of HSCC 00: Hybrid Systems—Computation and Control. LNCS, vol. 1790, pp. 296–309. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  125. 125.
    Milner, R.: An algebraic definition of simulation between programs. In: Cooper, D.C. (ed.) Proc. of the 2nd Int. Joint Conference on Artificial Intelligence, London, UK, September 1971. pp. 481–489. William Kaufmann, British Computer Society, London (1971) Google Scholar
  126. 126.
    Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980) zbMATHGoogle Scholar
  127. 127.
    Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Mitchell, I.M., Templeton, J.A.: A toolbox of Hamilton-Jacobi solvers for analysis of nondeterministic continuous and hybrid systems. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control. LNCS, vol. 3414, pp. 480–494. Springer, Heidelberg (2005) zbMATHCrossRefGoogle Scholar
  129. 129.
    Mitra, S., Wang, Y., Lynch, N.A., Feron, E.: Safety verification of model helicopter controller using hybrid input/output automata. In: Maler and Pnueli [8, 91], pp. 343–358 Google Scholar
  130. 130.
    Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous robotic ground vehicles. In: Robotics: Science and Systems (2013) Google Scholar
  131. 131.
    Nerode, A., Yakhnis, A.: Modelling hybrid systems as games. In: Proceedings of the 31st IEEE Conference on Decision and Control, vol. 3, pp. 2947–2952 (1992) Google Scholar
  132. 132.
    Nerode, A., Kohn, W.: Models for hybrid systems: automata, topologies, controllability, observability. In: Grossman et al. [135, 141], pp. 317–356 CrossRefGoogle Scholar
  133. 133.
    Neumaier, A.: The wrapping effect, ellipsoid arithmetic, stability and confidence regions. In: Validation Numerics, pp. 175–190. Springer, Heidelberg (1993) CrossRefGoogle Scholar
  134. 134.
    Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and analysis of hybrid systems. In: Grossman et al. [7, 12, 39, 80, 103, 143, 163, 171, 172], pp. 149–178 Google Scholar
  135. 135.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010) zbMATHCrossRefGoogle Scholar
  138. 138.
    Platzer, A.: Quantified differential invariants. In: Frazzoli and Grosu [165], pp. 63–72 Google Scholar
  139. 139.
    Platzer, A.: Stochastic differential dynamic logic for stochastic hybrid programs. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE. LNCS, vol. 6803, pp. 431–445. Springer, Heidelberg (2011) Google Scholar
  140. 140.
    Platzer, A.: A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems. Log. Methods Comput. Sci. 8(4), 1–44 (2012). Special issue for selected papers from CSL’10 MathSciNetzbMATHGoogle Scholar
  141. 141.
    Platzer, A.: The complete proof theory of hybrid systems. In: LICS [137], pp. 541–550 Google Scholar
  142. 142.
    Platzer, A.: A differential operator approach to equational differential invariants. In: Beringer, L., Felty, A. (eds.) ITP. LNCS, vol. 7406, pp. 28–48. Springer, Heidelberg (2012) Google Scholar
  143. 143.
    Platzer, A.: Logics of dynamical systems. In: LICS [111, 122], pp. 13–24 Google Scholar
  144. 144.
    Platzer, A.: The structure of differential invariants and differential cut elimination. Log. Methods Comput. Sci. 8(4), 1–38 (2012) MathSciNetzbMATHGoogle Scholar
  145. 145.
    Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reason. 59(2), 219–265 (2017) MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Heidelberg (2018) CrossRefGoogle Scholar
  147. 147.
    Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad et al. [8, 27, 29, 35, 52, 91, 118, 120, 131, 132, 134–136, 167, 179, 180], pp. 473–486 Google Scholar
  148. 148.
    Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. Form. Methods Syst. Des. 35(1), 98–120 (2009) zbMATHCrossRefGoogle Scholar
  149. 149.
    Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers: a case study. In: Cavalcanti, A., Dams, D. (eds.) FM. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009) Google Scholar
  150. 150.
    Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. LNCS, vol. 5195, pp. 171–178. Springer, Heidelberg (2008) Google Scholar
  151. 151.
    Platzer, A., Quesel, J.-D.: European Train Control System: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009) Google Scholar
  152. 152.
    Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow computations. In: Frazzoli and Grosu [22], pp. 133–142 Google Scholar
  153. 153.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur and Pappas [55, 63], pp. 477–492 Google Scholar
  154. 154.
    Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1429 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  155. 155.
    Puri, A.: Dynamical properties of timed automata. In: FTRTFT ’98. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998) Google Scholar
  156. 156.
    Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular differential inclusion. In: Proc. of CAV. LNCS, vol. 818, pp. 95–104. Springer, Heidelberg (1994) Google Scholar
  157. 157.
    Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-semidecidable. In: TAMC 2010: 7th Annual Conference on Theory and Applications of Models of Computation. LNCS, vol. 6108, pp. 397–408. Springer, Heidelberg (2010) Google Scholar
  158. 158.
    Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. Trans. Embed. Comput. Syst. 6(1), 8 (2007) zbMATHCrossRefGoogle Scholar
  159. 159.
    Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In: Johansson, K.H., Yi, W. (eds.) HSCC, pp. 221–230. ACM, New York (2010) Google Scholar
  160. 160.
    Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hybrid systems using template polyhedra. In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 188–202. Springer, Heidelberg (2008) zbMATHCrossRefGoogle Scholar
  161. 161.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. Form. Methods Syst. Des. 32(1), 25–55 (2008) zbMATHCrossRefGoogle Scholar
  162. 162.
    Segelken, M.: Abstraction and counterexample-guided construction of \(\omega \)-automata for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns, H. (eds.) CAV. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007) Google Scholar
  163. 163.
    Sokolsky, O., Lee, I., Heimdahl, M.P.E.: Challenges in the regulatory approval of medical cyber-physical systems. In: Chakraborty et al. [44], pp. 227–232 Google Scholar
  164. 164.
    Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control system using counterexample-guided search. Control Eng. Pract. 12(10), 1269–1278 (2004) CrossRefGoogle Scholar
  165. 165.
    Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, Heidelberg (2009) zbMATHCrossRefGoogle Scholar
  166. 166.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951) zbMATHGoogle Scholar
  167. 167.
    Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Anal. 11(6), 665–683 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  168. 168.
    Tiwari, A.: Approximate reachability for linear systems. In: Maler and Pnueli [6, 96], pp. 514–525 zbMATHCrossRefGoogle Scholar
  169. 169.
    Tiwari, A.: Abstractions for hybrid systems. Form. Methods Syst. Des. 32(1), 57–83 (2008) zbMATHCrossRefGoogle Scholar
  170. 170.
    Tiwari, A.: Generating box invariants. In: Egerstedt, M., Mishra, B. (eds.) HSCC. LNCS, vol. 4981, pp. 658–661. Springer, Heidelberg (2008) Google Scholar
  171. 171.
    Tiwari, A.: Logic in software, dynamical and biological systems. In: LICS, pp. 9–10. IEEE, Piscataway (2011) Google Scholar
  172. 172.
    Tiwari, A., Shankar, N., Rushby, J.M.: Invisible formal methods for embedded control systems. Proc. IEEE 91(1), 29–39 (2003) CrossRefGoogle Scholar
  173. 173.
    Tiwary, H.R.: On the hardness of computing intersection, union and Minkowski sum of polytopes. Discrete Comput. Geom. 40(3), 469–479 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  174. 174.
    Tomlin, C., Pappas, G., Košecká, J., Lygeros, J., Sastry, S.: Advanced air traffic automation: a case study in distributed decentralized control. In: Siciliano, B., Valavanis, K. (eds.) Control Problems in Robotics and Automation. Lecture Notes in Control and Information Sciences, vol. 230, pp. 261–295. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  175. 175.
    Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521 (1998) zbMATHCrossRefGoogle Scholar
  176. 176.
    Umeno, S., Lynch, N.A.: Proving safety properties of an aircraft landing protocol using I/O automata and the PVS theorem prover: a case study. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM, vol. 4085, pp. 64–80. Springer, Heidelberg (2006) Google Scholar
  177. 177.
    Umeno, S., Lynch, N.A.: Safety verification of an aircraft landing protocol: a refinement approach. In: Bemporad et al. [136], pp. 557–572 Google Scholar
  178. 178.
    Vaandrager, F.W., van Schuppen, J.H. (eds.) Hybrid Systems: Computation and Control, Proceedings of the Second International Workshop, HSCC’99, Berg en Dal, The Netherlands, March 29–31, 1999. LNCS, vol. 1569, Springer, Heidelberg (1999) zbMATHGoogle Scholar
  179. 179.
    van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax and consistent equation semantics of hybrid Chi. J. Log. Algebraic Program. 68(1–2), 129–210 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  180. 180.
    van Beek, D.A., Reniers, M.A., Schiffelers, R.R.H., Rooda, J.E.: Concrete syntax and semantics of the compositional interchange format for hybrid systems. In: 17th IFAC World Congress (2008) Google Scholar
  181. 181.
    Wong-Toi, H.: Analysis of slope-parametric rectangular automata. In: Hybrid Systems. LNCS, vol. 1567, pp. 390–413. Springer, Heidelberg (1997) Google Scholar
  182. 182.
    Wongpiromsarn, T., Mitra, S., Murray, R.M., Lamperski, A.G.: Periodically controlled hybrid systems. In: Majumdar, R., Tabuada, P. (eds.) HSCC. LNCS, vol. 5469, pp. 396–410. Springer, Heidelberg (2009) Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Laurent Doyen
    • 1
  • Goran Frehse
    • 2
  • George J. Pappas
    • 3
  • André Platzer
    • 4
    Email author
  1. 1.LSV, CNRS & ENS Paris-SaclayCachanFrance
  2. 2.Verimag, University Grenoble AlpesGrenobleFrance
  3. 3.University of PennsylvaniaPhiladelphiaUSA
  4. 4.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations