Superlubricity in Layered Nanostructures

  • Seymur Cahangirov
  • Salim CiraciEmail author
Part of the NanoScience and Technology book series (NANO)


Interaction between two surfaces in relative motion can give rise to energy dissipation and hence sliding friction. A significant portion of the energy is dissipated through the creation of non-equilibrium phonons. Recent advances in material synthesis have made the production of specific single layer honeycomb structures and their multilayer phases, such as graphene, graphane, fluorographene, MoS\(_2\) and WO\(_2\). When coated to the moving surfaces, the attractive interaction between these layers is normally very weak and becomes repulsive at large separation under loading force. Providing a rigorous quantum mechanical treatment for the 3D sliding motion under a constant loading force within Prandtl-Tomlinson model, we derive the critical stiffness required to avoid stick-slip motion. Also these nanostructures acquire low critical stiffness even under high loading force due to their charged surfaces repelling each other. The intrinsic stiffness of these materials exceeds critical stiffness and thereby the materials avoid stick-slip regime and attain nearly dissipationless continuous sliding. Remarkably, layered WO\(_2\) a much better performance as compared to others and promises a potential superlubricant nanocoating. The absence of mechanical instabilities leading to conservative lateral forces is also confirmed directly by the simulations of sliding layers. Graphene coated metal surfaces also attain superlubricity and hence nearly frictionless sliding through a charge exchange mechanism with metal surface.


Friction Force Molybdenum Disulfide Honeycomb Structure Bilayer Graphene Graphene Flake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This Chapter is partially based on the doctoral thesis work of S. Cahangirov at Bilkent University and the related research results were initially reported in Phys. Rev. Lett. 108, 126103 (2012) and Phys. Rev. B. 87, 205428 (2013). The authors thank C. Ataca, M. Topsakal, H. Şahin and Ongun Özçelik for their contributions to the theoretical research on sliding friction in our group at UNAM, National Nanotechnolgy Research Center at Bilkent University.


  1. 1.
    L. Prandtl, Z. Angew, Math. Mech. 8, 85 (1928)zbMATHGoogle Scholar
  2. 2.
    G.A. Tomlinson, Philos. Mag. 7, 905 (1929)Google Scholar
  3. 3.
    B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998)CrossRefGoogle Scholar
  4. 4.
    M. Urbakh, E. Meyer, Nature Mat. 9, 8 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang, Phys. Rev. Lett. 59, 1942 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    D. Tomanék, W. Zhong, H. Thomas, Europhys. Lett. 15, 887 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    A. Buldum, S. Ciraci, Phys. Rev. B 55, 2606 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    M.H. Mueser, M. Urbakh, M.O. Robbins, Advances. Chem. Phys. 126, 187 (2003)Google Scholar
  9. 9.
    V.L. Gurevich, Transport in Phonon Systems (North-Holland, Amsterdam, 1986)Google Scholar
  10. 10.
    A. Buldum, D.M. Leitner, S. Ciraci, Phys. Rev. B 59, 16042 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    H. Sevincli, S. Mukhopadhyay, R.T. Senger, S. Ciraci, Phys. Rev. B 76, 205430 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, H.-J. Gntherodt, Phys. Rev. Lett. 84, 1172 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Phys. Rev. Lett. 92, 134301 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    H. Şahin, C. Ataca, S. Ciraci, Phys. Rev. B 81, 205417 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, P. Blake, F. Schedin, A.S. Mayorov, S. Yuan, M.I. Katsnelson, H.-M. Cheng, W. Strupinski, L.G. Bulusheva, A.V. Okotrub, I.V. Grigorieva, A.N. Grigorenko, K.S. Novoselov, A.K. Geim, Small 6, 2877 (2010)CrossRefGoogle Scholar
  17. 17.
    H. Şahin, M. Topsakal, S. Ciraci, Phys. Rev. B 83, 115432 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    C. Ataca, M. Topsakal, E. Aktürk, S. Ciraci, J. Phys. Chem. C 115, 16354 (2011)CrossRefGoogle Scholar
  19. 19.
    C. Ataca, H. Sahin, E. Aktürk, S. Ciraci, J. Phys. Chem. C 116, 8983 (2011)CrossRefGoogle Scholar
  20. 20.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    M. Topsakal, S. Cahangirov, S. Ciraci, App. Phys. Lett. 96, 091912 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    S. Miyake, R. Kaneko, Y. Kikuya, I. Sugimoto, J. Tribol. 113, 384 (1991)CrossRefGoogle Scholar
  24. 24.
    P. Thomas, K. Delbe, D. Himmel, J.L. Mansot, F. Cadore, K. Guerin, M. Dubois, C. Delabarre, A. Hamwi, J. Phys. Chem. Solids 67, 1095 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    J.M. Martin, C. Donnet, Th. Le Mogne, Th. Epicier, Phys. Rev. B 48, 10583 (1993)Google Scholar
  26. 26.
    T. Liang, W.G. Sawyer, S.S. Perry, S.B. Sinnott, S.R. Phillpot, Phys. Rev. B 77, 104105 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, X. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J. Kang, J. Park, R.S. Ruoff, ACS Nano 5, 1321 (2011)CrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    S. Grimme, J. Comp. Chem. 27, 1787 (2006)CrossRefGoogle Scholar
  30. 30.
    P.E. Blochl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    S. Cahangirov, C. Ataca, M. Topsakal, H. Şahin, S. Ciraci, Phys. Rev. Lett. 108, 126103 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S. Cahangirov, S. Ciraci, V. Ongun, Özçelik. Phys. Rev. B 87, 205428 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    L.C. Lew, Yan Voon, E. Sandberg, R. S. Aga, A. A. Farajian. Appl. Phys. Lett. 97, 163114 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 98, 223107 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    S. Cahangirov, E. Aktürk, M. Topsakal, H. Şahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, Phys. Rev. Lett. 92, 126101 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    J.S. Choi, J.S. Kim, I.S. Byun, D.H. Lee, M.J. Lee, B.H. Park, C. Lee, D. Yoon, H. Cheong, K.H. Lee, Y.W. Son, J.Y. Park, M. Salmeron, Science 333, 607 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    A.E. Filippov, M. Dienwiebel, J.W.M. Frenken, J. Klafter, M. Urbakh, Phys. Rev. Lett. 100, 046102 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    A.S. de Wijn, C. Fusco, A. Fasolino, Phys. Rev. E 81, 046105 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    I.V. Lebedeva, A.A. Knizhnik, A.M. Popov, O.V. Ershova, Y.E. Lozovik, B.V. Potapkin, Phys. Rev. B 82, 155460 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    A.M. Popov, I.V. Lebedeva, A.A. Knizhnik, Y.E. Lozovik, B.V. Potapkin, Phys. Rev. B 84, 045404 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    H. Lee, N. Lee, Y. Seo, J. Eom, S.W. Lee, Nanotechnology 20, 325701 (2009)CrossRefGoogle Scholar
  45. 45.
    T. Filleter, J.L. McChesney, A. Bostwick, E. Rotenberg, K.V. Emtsev, Th. Seyller, K. Horn, R. Bennewitz, Phys. Rev. Lett. 102, 086102 (2009)Google Scholar
  46. 46.
    C. Lee, Q. Li, W. Kalb, X.Z. Liu, H. Berger, R.W. Carpick, J. Hone, Science 328, 76 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    A. Erdemir, Surf. Coat. Technol. 146, 292 (2001)CrossRefGoogle Scholar
  48. 48.
    D. Berman, A. Erdemir, A.V. Sumant, Carbon 54, 454 (2013)CrossRefGoogle Scholar
  49. 49.
    D. Berman, A. Erdemir, A.V. Sumant, Carbon 59, 167 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Nano-Bio Spectroscopy Group, Departamento Fisica de MaterialesCentro de Fisica de Materiales CSIC-UPV/EHU-MPC and DIPC, Universidad Del Pais VascoSan SebastianSpain
  2. 2.Department of PhysicsBilkent UniversityAnkaraTurkey

Personalised recommendations