Modeling and Evaluation of Maintenance Procedures for Gas Distribution Networks with Time-Dependent Parameters

  • Laura Carnevali
  • Marco Paolieri
  • Fabio Tarani
  • Enrico Vicario
  • Kumiko Tadano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8696)

Abstract

Gas networks comprise a special class of infrastructure, with relevant implications on safety and availability of universal services. In this context, the ongoing deregulation of network operation gives relevance to modeling and evaluation techniques supporting predictability of dependability metrics. We propose a modeling approach that represents maintenance procedures as a multi-phased system, with parameters depending on physical and geographical characteristics of the network, working hours, and evolution of loads over the day. The overall model is cast into a non-Markovian variant of stochastic Petri nets, which allows concurrent execution of multiple generally distributed transitions but maintains a complexity independent of network size and topology. Solution is achieved through an interleaved execution of fluid-dynamic analysis of the network and analytic solution of the stochastic model of the procedure. Solution provides availability measures for individual sections of the network as well as global quality of service parameters.

Keywords

gas distribution networks non time-homogeneous systems performance evaluation Markov regenerative processes transient stochastic state classes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Bobbio, A., Horváth, A., Telek, M.: Phfit: A general phase-type fitting tool. In: Proceedings of the International Conference on Dependable Systems and Networks, DSN 2002, p. 543. IEEE (2002)Google Scholar
  3. 3.
    Bobbio, A., Telek, M.: Markov regenerative SPN with non-overlapping activity cycles. In: Int. Computer Performance and Dependability Symp., IPDS 1995, pp. 124–133 (1995)Google Scholar
  4. 4.
    Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification and evaluation of real-time systems. International Journal on Software Tools for Technology Transfer 12(5), 391–403 (2010)CrossRefGoogle Scholar
  5. 5.
    Carnevali, L., Grassi, L., Vicario, E.: State-Density Functions over DBM Domains in the Analysis of Non-Markovian Models. IEEE Trans. on SW Eng. 35(2), 178–194 (2009)CrossRefGoogle Scholar
  6. 6.
    Carnevali, L., Paolieri, M., Tarani, F., Vicario, E.: Quantitative evaluation of availability measures of gas distribution networks. In: VALUETOOLS (September 2013)Google Scholar
  7. 7.
    Carnevali, L., Ridi, L., Vicario, E.: A framework for simulation and symbolic state space analysis of non-markovian models. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 409–422. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Perform. Eval. 20(1-3), 337–357 (1994)Google Scholar
  9. 9.
    Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic process underlying a stochastic petri net. IEEE Transactions on Software Engineering 20(7), 506–515 (1994)CrossRefGoogle Scholar
  10. 10.
    Colebrook, C.: Turbulent flow in pipes, with particular reference to the transition region between smooth and rough pipe laws. Journal of the Institution of Civil Engineers (London) (1939)Google Scholar
  11. 11.
    Costa, A., de Medeiros, J., Pessoa, F.: Steady-state modeling and simulation of pipeline networks for compressible fluids. Brazilian Journal of Chemical Engineering 15(4), 344–357 (1998)CrossRefGoogle Scholar
  12. 12.
    Courtney, T., Gaonkar, S., Keefe, K., Rozier, E., Sanders, W.H.: Möbius 2.3: An extensible tool for dependability, security, and performance evaluation of large and complex system models. In: IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN), pp. 353–358 (2009)Google Scholar
  13. 13.
    Glynn, P.W.: A GSMP formalism for discrete-event systems. Proceedings of the IEEE 77, 14–23 (1989)Google Scholar
  14. 14.
    Herrán-González, A., Cruz, J.D.L., Andrés-Toro, B.D., Risco-Martín, J.: Modeling and simulation of a gas distribution pipeline network. Applied Mathematical Modelling 33(3), 1584–1600 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian models using stochastic state classes. In: Performance Evaluation (2012)Google Scholar
  16. 16.
    Koeppel, G., Andersson, G.: Reliability modeling of multi-carrier energy systems. Energy 34(3), 235–244 (2009)CrossRefGoogle Scholar
  17. 17.
    Li, T., Eremia, M., Shahidehpour, M.: Interdependency of natural gas network and power system security. IEEE Transactions on Power Systems 23(4), 1817–1824 (2008)CrossRefGoogle Scholar
  18. 18.
    Martínez-Mares, A., Fuerte-Esquivel, C.: Integrated energy flow analysis in natural gas and electricity coupled systems. In: North American Power Symposium (NAPS), pp. 1–7. IEEE (2011)Google Scholar
  19. 19.
    Munoz, J., Jimenez-Redondo, N., Perez-Ruiz, J., Barquin, J.: Natural gas network modeling for power systems reliability studies. In: Power Tech Conf. Proc., IEEE Bologna, vol. 4, p. 8 (2003)Google Scholar
  20. 20.
    Mura, I., Bondavalli, A.: Markov regenerative stochastic Petri nets to model and evaluate phased mission systems dependability. IEEE Transactions on Computers 50(12), 1337–1351 (2001)Google Scholar
  21. 21.
    Reinecke, P., Krauss, T., Wolter, K.: Hyperstar: Phase-type fitting made easy. In: QEST, pp. 201–202 (2012)Google Scholar
  22. 22.
    Smart Grids Task Force of the European Commission. Mission and work programme. Technical report (2012)Google Scholar
  23. 23.
    Szoplik, J.: The Gas Transportation in a Pipeline Network. In: Al-Megren, H. (ed.) Advances in Natural Gas Technology. InTech (2012) ISBN: 978-953-51-0507-7Google Scholar
  24. 24.
    Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Trans. SW Eng. 35(5), 703–719 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Laura Carnevali
    • 1
  • Marco Paolieri
    • 1
  • Fabio Tarani
    • 1
  • Enrico Vicario
    • 1
  • Kumiko Tadano
    • 2
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità di FirenzeItaly
  2. 2.Central Research LaboratoriesNEC CorporationKawasakiJapan

Personalised recommendations