Advertisement

Verification of a Real-Time Safety-Critical Protocol Using a Modelling Language with Formal Data and Behaviour Semantics

  • Tamás Tóth
  • András Vörös
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8696)

Abstract

Formal methods have an important role in ensuring the correctness of safety critical systems. However, their application in industry is always cumbersome: the lack of experts and the complexity of formal languages prevents the efficient application of formal verification techniques. In this paper we take a step in the direction of making formal modelling simpler by introducing a framework which helps designers to construct formal models efficiently. Our formal modelling framework supports the development of traditional transition systems enriched with complex data types with type checking and type inference services, time dependent behaviour and timing parameters with relations. In addition, we introduce a toolchain to provide formal verification. Finally, we demonstrate the usefulness of our approach in an industrial case study.

Keywords

Model Check Time Dependent Behaviour Control Side Eclipse Modeling Framework Type Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behrmann, G., David, A., Larsen, K.G., Möller, O., Pettersson, P., Yi, W.: Uppaal - present and future. In: Proc. of 40 th IEEE Conference on Decision and Control, IEEE Computer Society Press (2001)Google Scholar
  2. 2.
    Bozzano, M., Villafiorita, A.: The fsap/nusmv-sa safety analysis platform. International Journal on Software Tools for Technology Transfer 9(1), 5–24 (2007)CrossRefGoogle Scholar
  3. 3.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.E.: A proposal for model-based safety analysis. In: The 24th Digital Avionics Systems Conference, DASC 2005, vol. 2, p. 13 (October 2005)Google Scholar
  5. 5.
    Kindermann, R., Junttila, T., Niemelä, I.: SMT-based induction methods for timed systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 171–187. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Pike, L.: Real-time system verification by k-induction. Tech. Rep. TM-2005-213751, NASA Langley Research Center (May 2005)Google Scholar
  8. 8.
    Tóth, T., Vörös, A., Majzik, I.: K-induction based verification of real-time safety critical systems. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) New Results in Dependability & Comput. Syst. AISC, vol. 224, pp. 469–478. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tamás Tóth
    • 1
  • András Vörös
    • 1
  1. 1.Budapest University of Technology and EconomicsHungary

Personalised recommendations