Temporal State Management for Supporting the Real-Time Analysis of Clinical Data

  • Andreas BehrendEmail author
  • Philip Schmiegelt
  • Jingquan Xie
  • Ronny Fehling
  • Adel Ghoneimy
  • Zhen Hua Liu
  • Eric Chan
  • Dieter Gawlick
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 312)


Database systems are more and more employed to analyze an ever increasing amount of temporal data by applying a continuously evolving knowledge and are expected to do this in a timely fashion. Examples are financial services, computer systems monitoring, air traffic monitoring, and patient care. In each of these cases data are processed in order to understand current situations and to determine optimal responses. In this paper, we exemplarily investigate system requirements for a patient care scenario in which patient data are continuously collected and processed by a database system. We show that the concepts provided by today’s systems are still not enough for supporting the complex reasoning process needed. In particular, we identify situation-based reasoning as a missing database component and propose a temporal state concept for leveraging simple event processing. States provide a high level (and qualitative) description of past and current situations defined over streams of medical data, complemented by projections into the future. Our proposed database extension allows for a compact and intuitive representation of medical data; much like physicians use abstraction from details and dramatically simplifies the analysis of medical data.


Monitoring Medical Databases Data Streams CEP Provenance Knowledge Management Declarative Programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adaikkalavan, R., Chakravarthy, S.: Formalization and Detection of Events using Interval-Based Semantics. In: COMAD, pp. 58–69 (2005)Google Scholar
  2. 2.
    Belleghem, K.V., Denecker, M., Schreye, D.D.: Combining Situation Calculus and Event Calculus. In: ICLP, pp. 83–97 (1995)Google Scholar
  3. 3.
    Galton, A., Augusto, J.C.: Two Approaches to Event Definition. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 547–556. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Gawlick, D., Ghoneimy, A., Liu, Z.H.: How to build a modern patient care application. In: HEALTHINF, pp. 427–432 (2011)Google Scholar
  5. 5.
    Guerra, D., Gawlick, U., Bizarro, P., Gawlick, D.: An Integrated Data Management Approach to Manage Health Care Data. In: BTW, pp. 596–605 (2011)Google Scholar
  6. 6.
    Kowalski, R.A., Sergot, M.J.: A Logic-Based Calculus of Events. New Generation Computing 4(1), 67–95 (1986)CrossRefGoogle Scholar
  7. 7.
    Krämer, J., Seeger, B.: PIPES - A Public Infrastructure for Processing and Exploring Streams. In: SIGMOD, pp. 925–926 (2004)Google Scholar
  8. 8.
    Liu, Z.H., Behrend, A., Chan, E., Gawlick, D., Ghoneimy, A.: Kids - a model for developing evolutionary database applications. In: DATA, pp. 129–134 (2012)Google Scholar
  9. 9.
    Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems, 1st edn. Addison-Wesley (2002)Google Scholar
  10. 10.
    McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence 4, 463–502 (1969)zbMATHGoogle Scholar
  11. 11.
    Onisko, A., Druzdzel, M.J., Wasyluk, H.: A Bayesian Network Model for Diagnosis of Liver Disorders. Biocybernetics and Biomedical Engineering, 842–846 (1999)Google Scholar
  12. 12.
    Reiter, R.: Formalizing Database Evolution in the Situation Calculus. In: FGCS, pp. 600–609 (1992)Google Scholar
  13. 13.
    Roncancio, C.L.: Toward Duration-Based, Constrained and Dynamic Event Types. In: Andler, S.F., Hansson, J. (eds.) ARTDB 1997. LNCS, vol. 1553, pp. 176–193. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Schmiegelt, P., Xie, J., Schüller, G., Behrend, A.: Database functionalities for evolving monitoring applications. In: DATA (2013)Google Scholar
  15. 15.
    Schüller, G., Behrend, A., Manthey, R.: AIMS: An SQL-based System for Airspace Monitoring. In: IWGS, pp. 31–38 (2010)Google Scholar
  16. 16.
    Schüller, G., Schmiegelt, P., Behrend, A.: Supporting Phase Management in Stream Applications. In: Morzy, T., Härder, T., Wrembel, R. (eds.) ADBIS 2012. LNCS, vol. 7503, pp. 332–345. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andreas Behrend
    • 1
    Email author
  • Philip Schmiegelt
    • 2
  • Jingquan Xie
    • 3
  • Ronny Fehling
    • 4
  • Adel Ghoneimy
    • 4
  • Zhen Hua Liu
    • 4
  • Eric Chan
    • 4
  • Dieter Gawlick
    • 4
  1. 1.University of BonnBonnGermany
  2. 2.Fraunhofer FKIESankt AugustinGermany
  3. 3.Fraunhofer IAISSankt AugustinGermany
  4. 4.OracleSan FranciscoUSA

Personalised recommendations