Generalized Mass-Action Systems and Positive Solutions of Polynomial Equations with Real and Symbolic Exponents (Invited Talk)

  • Stefan Müller
  • Georg Regensburger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8660)

Abstract

Dynamical systems arising from chemical reaction networks with mass action kinetics are the subject of chemical reaction network theory (CRNT). In particular, this theory provides statements about uniqueness, existence, and stability of positive steady states for all rate constants and initial conditions. In terms of the corresponding polynomial equations, the results guarantee uniqueness and existence of positive solutions for all positive parameters.

We address a recent extension of CRNT, called generalized mass-action systems, where reaction rates are allowed to be power-laws in the concentrations. In particular, the (real) kinetic orders can differ from the (integer) stoichiometric coefficients. As with mass-action kinetics, complex balancing equilibria are determined by the graph Laplacian of the underlying network and can be characterized by binomial equations and parametrized by monomials. In algebraic terms, we focus on a constructive characterization of positive solutions of polynomial equations with real and symbolic exponents.

Uniqueness and existence for all rate constants and initial conditions additionally depend on sign vectors of the stoichiometric and kinetic-order subspaces. This leads to a generalization of Birch’s theorem, which is robust with respect to certain perturbations in the exponents. In this context, we discuss the occurrence of multiple complex balancing equilibria.

We illustrate our results by a running example and provide a MAPLE worksheet with implementations of all algorithmic methods.

Keywords

Chemical reaction network theory generalized mass-action systems generalized polynomial equations symbolic exponents positive solutions binomial equations Birch’s theorem oriented matroids multistationarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adrovic, D., Verschelde, J.: A polyhedral method to compute all affine solution sets of sparse polynomial systems (2013), http://arxiv.org/abs/1310.4128, arXiv:1310.4128 [cs.SC]Google Scholar
  2. 2.
    Bachem, A., Kern, W.: Linear programming duality. Springer, Berlin (1992)CrossRefMATHGoogle Scholar
  3. 3.
    Basu, S., Pollack, R., Roy, M.F.: Algorithms in real algebraic geometry, 2nd edn. Springer, Berlin (2006)MATHGoogle Scholar
  4. 4.
    Ben-Israel, A., Greville, T.N.E.: Generalized inverses, 2nd edn. Springer, New York (2003)MATHGoogle Scholar
  5. 5.
    Birch, M.W.: Maximum likelihood in three-way contingency tables. J. Roy. Statist. Soc. Ser. B 25, 220–233 (1963)MATHMathSciNetGoogle Scholar
  6. 6.
    Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented matroids, 2nd edn. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  7. 7.
    Boulier, F., Lemaire, F., Petitot, M., Sedoglavic, A.: Chemical reaction systems, computer algebra and systems biology. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 73–87. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Brualdi, R.A., Ryser, H.J.: Combinatorial matrix theory. Cambridge University Press, Cambridge (1991)Google Scholar
  9. 9.
    Conradi, C., Flockerzi, D., Raisch, J.: Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math. Biosci. 211, 105–131 (2008)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Corless, R.M., Jeffrey, D.J.: The turing factorization of a rectangular matrix. SIGSAM Bull. 31, 20–30 (1997)CrossRefGoogle Scholar
  11. 11.
    Corless, R.M., Jeffrey, D.J.: Linear Algebra in Maple. In: CRC Handbook of Linear Algebra, 2nd edn. Chapman and Hall/CRC (2013)Google Scholar
  12. 12.
    Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J. Symbolic Comput. 44, 1551–1565 (2009)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Dickenstein, A.: A world of binomials. In: Foundations of Computational Mathematics, Hong Kong, pp. 42–67. Cambridge Univ. Press, Cambridge (2009)Google Scholar
  14. 14.
    Errami, H., Seiler, W.M., Eiswirth, M., Weber, A.: Computing Hopf bifurcations in chemical reaction networks using reaction coordinates. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 84–97. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Feinberg, M.: Complex balancing in general kinetic systems. Arch. Rational Mech. Anal. 49, 187–194 (1972)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Feinberg, M.: Lectures on chemical reaction networks (1979), http://crnt.engineering.osu.edu/LecturesOnReactionNetworks
  17. 17.
    Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors–I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42, 2229–2268 (1987)CrossRefGoogle Scholar
  18. 18.
    Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors–II. Multiple steady states for networks of deficiency one. Chem. Eng. Sci. 43, 1–25 (1988)CrossRefGoogle Scholar
  19. 19.
    Feinberg, M.: The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Rational Mech. Anal. 132, 311–370 (1995)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Feinberg, M.: Multiple steady states for chemical reaction networks of deficiency one. Arch. Rational Mech. Anal. 132, 371–406 (1995)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Feinberg, M., Horn, F.J.M.: Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces. Arch. Rational Mech. Anal. 66, 83–97 (1977)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Fienberg, S.E.: Introduction to Birch (1963) Maximum likelihood in three-way contingency tables. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in statistics, vol. II, pp. 453–461. Springer, New York (1992)CrossRefGoogle Scholar
  23. 23.
    Fulton, W.: Introduction to toric varieties. Princeton University Press, Princeton (1993)Google Scholar
  24. 24.
    Gatermann, K., Wolfrum, M.: Bernstein’s second theorem and Viro’s method for sparse polynomial systems in chemistry. Adv. in Appl. Math. 34, 252–294 (2005)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Gatermann, K.: Counting stable solutions of sparse polynomial systems in chemistry. In: Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, pp. 53–69. Amer. Math. Soc., Providence (2001)CrossRefGoogle Scholar
  26. 26.
    Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. J. Symbolic Comput. 40, 1361–1382 (2005)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chemical reaction systems. J. Symbolic Comput. 33, 275–305 (2002)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Gopalkrishnan, M., Miller, E., Shiu, A.: A Geometric Approach to the Global Attractor Conjecture. SIAM J. Appl. Dyn. Syst. 13, 758–797 (2014)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Grigoriev, D., Weber, A.: Complexity of solving systems with few independent monomials and applications to mass-action kinetics. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 143–154. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Gunawardena, J.: Chemical reaction network theory for in-silico biologists (2003), http://vcp.med.harvard.edu/papers/crnt.pdf
  31. 31.
    Gunawardena, J.: A linear framework for time-scale separation in nonlinear biochemical systems. PLoS ONE 7, e36321 (2012)Google Scholar
  32. 32.
    Horn, F.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Rational Mech. Anal. 49, 172–186 (1972)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Horn, F., Jackson, R.: General mass action kinetics. Arch. Rational Mech. Anal. 47, 81–116 (1972)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Johnston, M.D.: Translated Chemical Reaction Networks. Bull. Math. Biol. 76(5), 1081–1116 (2014)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Jungnickel, D.: Graphs, networks and algorithms, 4th edn. Springer, Heidelberg (2013)CrossRefMATHGoogle Scholar
  36. 36.
    Lemaire, F., Ürgüplü, A.: MABSys: Modeling and analysis of biological systems. In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) ANB 2010. LNCS, vol. 6479, pp. 57–75. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  37. 37.
    Mirzaev, I., Gunawardena, J.: Laplacian dynamics on general graphs. Bull. Math. Biol. 75, 2118–2149 (2013)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Mnëv, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Topology and geometry—Rohlin Seminar. Lecture Notes in Math., vol. 1346, pp. 527–543. Springer, Berlin (1988)CrossRefGoogle Scholar
  39. 39.
    Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A.: Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry (2013) (submitted), http://arxiv.org/abs/1311.5493, arXiv:1311.5493 [math.AG]Google Scholar
  40. 40.
    Müller, S., Regensburger, G.: Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces. SIAM J. Appl. Math. 72, 1926–1947 (2012)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Pachter, L., Sturmfels, B.: Statistics. In: Algebraic statistics for computational biology, pp. 3–42. Cambridge Univ. Press, New York (2005)CrossRefGoogle Scholar
  42. 42.
    Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems with toric steady states. Bull. Math. Biol. 74, 1027–1065 (2012)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Rambau, J.: TOPCOM: triangulations of point configurations and oriented matroids. In: Mathematical Software (Beijing 2002), pp. 330–340. World Sci. Publ, River Edge (2002)Google Scholar
  44. 44.
    Richter-Gebert, J., Ziegler, G.M.: Oriented matroids. In: Handbook of Discrete and Computational Geometry, pp. 111–132. CRC, Boca Raton (1997)Google Scholar
  45. 45.
    Samal, S.S., Errami, H., Weber, A.: PoCaB: A software infrastructure to explore algebraic methods for bio-chemical reaction networks. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 294–307. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  46. 46.
    Savageau, M.A.: Biochemical systems analysis: II. The steady state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–379 (1969)CrossRefGoogle Scholar
  47. 47.
    Thomson, M., Gunawardena, J.: The rational parameterisation theorem for multisite post-translational modification systems. J. Theoret. Biol. 261, 626–636 (2009)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Voit, E.O.: Biochemical systems theory: A review. In: ISRN Biomath. 2013, 897658 (2013)Google Scholar
  49. 49.
    Zeilberger, D.: A combinatorial approach to matrix algebra. Discrete Math. 56, 61–72 (1985)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Ziegler, G.M.: Lectures on polytopes. Springer, New York (1995)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stefan Müller
    • 1
  • Georg Regensburger
    • 1
  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria

Personalised recommendations