Towards Conflict-Driven Learning for Virtual Substitution

  • Konstantin Korovin
  • Marek Kos̆ta
  • Thomas Sturm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8660)

Abstract

We consider satisfiability modulo theory-solving for linear real arithmetic. Inspired by related work for the Fourier–Motzkin method, we combine virtual substitution with learning strategies. For the first time, we present virtual substitution—including our learning strategies—as a formal calculus. We prove soundness and completeness for that calculus. Some standard linear programming benchmarks computed with an experimental implementation of our calculus show that the integration of learning techniques into virtual substitution gives rise to considerable speedups. Our implementation is open-source and freely available.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, E., Loup, U., Corzilius, F., Sturm, T.: A lazy SMT-solver for a non-linear subset of real algebra. In: Proceedings of the SMT 2010 (2010)Google Scholar
  2. 2.
    Corzilius, F., Ábrahám, E.: Virtual substitution for SMT-solving. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 360–371. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press (1963)Google Scholar
  4. 4.
    Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. In: Algorithmic Algebra and Number Theory, pp. 221–247. Springer (1998)Google Scholar
  6. 6.
    Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. JSAT 1, 209–236 (2007)Google Scholar
  7. 7.
    Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Klee, V., Minty, G.: How good is the simplex algorithm? In: Proceedings of the Third Symposium on Inequalities, pp. 159–175. Academic Press (1972)Google Scholar
  9. 9.
    Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict resolution. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Korovin, K., Voronkov, A.: Solving systems of linear inequalities by bound propagation. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 369–383. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer Journal 36(5), 450–462 (1993)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Loup, U., Scheibler, K., Corzilius, F., Ábrahám, E., Becker, B.: A symbiosis of interval constraint propagation and cylindrical algebraic decomposition. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 193–207. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to richer logics. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Motzkin, T.S.: Beiträge zur Theorie der linearen Ungleichungen. Doctoral dissertation, Universität Zürich (1936)Google Scholar
  15. 15.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Platzer, A., Quesel, J.D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Sofronie-Stokkermans, V.: Hierarchical and modular reasoning in complex theories: The case of local theory extensions. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 47–71. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Sturm, T.: Real Quantifier Elimination in Geometry. Doctoral dissertation, Universität Passau, Germany (1999)Google Scholar
  19. 19.
    Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination. In: Proceedings of the ISSAC 2011, pp. 329–336. ACM Press (2011)Google Scholar
  20. 20.
    Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Math. Comput. Sci. 2(3), 493–515 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Weber, A., Sturm, T., Abdel-Rahman, E.O.: Algorithmic global criteria for excluding oscillations. Bull. Math. Biol. 73(4), 899–916 (2011)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput. 5(1&2), 3–27 (1988)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Weispfenning, V.: Parametric linear and quadratic optimization by elimination. Technical Report MIP-9404, Universität Passau, Germany (1994)Google Scholar
  24. 24.
    Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Appl. Algebr. Eng. Comm. 8(2), 85–101 (1997)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Konstantin Korovin
    • 1
  • Marek Kos̆ta
    • 2
  • Thomas Sturm
    • 2
  1. 1.The University of ManchesterUK
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations