A Note on Global Newton Iteration Over Archimedean and Non-Archimedean Fields

  • Jonathan D. Hauenstein
  • Victor Y. Pan
  • Agnes Szanto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8660)


In this paper, we study iterative methods on the coefficients of the rational univariate representation (RUR) of a given algebraic set, called a global Newton iterations. We compare two natural approaches to define locally quadratically convergent iterations: the first one involves Newton iteration applied to the approximate roots individually and then interpolation to find the RUR of these approximate roots; the second one considers the coefficients in the exact RUR as zeroes of a high dimensional map defined by polynomial reduction and applies Newton iteration on this map. We prove that over fields with a p-adic valuation these two approaches give the same iteration function. However, over fields equipped with the usual Archimedean absolute value they are not equivalent. In the latter case, we give explicitly the iteration function for both approaches. Finally, we analyze the parallel complexity of the different versions of the global Newton iteration, compare them, and demonstrate that they can be efficiently computed. The motivation for this study comes from the certification of approximate roots of overdetermined and singular polynomial systems via the recovery of an exact RUR from approximate numerical data.


Newton Iteration Polynomial System Primitive Element Iteration Function Parallel Random Access Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, J., Fassino, C., Torrente, M.-L.: Stable border bases for ideals of points. J. Symbolic Comput. 43(12), 883–894 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Akoglu, T.A., Hauenstein, J.D., Szanto, A.: Certifying solutions to overdetermined and singular polynomial systems over Q. (2013) (manuscript)Google Scholar
  3. 3.
    Avendaño, M., Krick, T., Pacetti, A.: Newton-Hensel interpolation lifting. Found. Comput. Math. 6(1), 81–120 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software for numerical algebraic geometry,
  5. 5.
    Bini, D., Pan, V.Y.: Polynomial and matrix computations. Progress in Theoretical Computer Science, vol. 1. Birkhäuser Boston Inc., Boston (1994)Google Scholar
  6. 6.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998)CrossRefGoogle Scholar
  7. 7.
    Castro, D., Pardo, L.M., Hägele, K., Morais, J.E.: Kronecker’s and Newton’s approaches to solving: a first comparison. J. Complexity 17(1), 212–303 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chistov, A.L.: An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 137, 124–188 (1984)Google Scholar
  9. 9.
    Fassino, C.: Almost vanishing polynomials for sets of limited precision points. J. Symbolic Comput. 45(1), 19–37 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fassino, C., Torrente, M.-L.: Simple varieties for limited precision points. Theoret. Comput. Sci. 479, 174–186 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Ferguson, H.R.P., Bailey, D.H., Arno, S.: Analysis of PSLQ, an integer relation finding algorithm. Math. Comp. 68(225), 351–369 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Giusti, M., Heintz, J., Hägele, K., Morais, J.E., Pardo, L.M., Montaña, J.L.: Lower bounds for Diophantine approximations. J. Pure Appl. Algebra 117/118, 277–317 (1997)Google Scholar
  13. 13.
    Giusti, M., Heintz, J., Morais, J.E., Morgenstern, J., Pardo, L.M.: Straight-line programs in geometric elimination theory. J. Pure Appl. Algebra 124, 101–146 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system solving. J. Complexity 17(1), 154–211 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Grigorév, D.Y.: Factoring polynomials over a finite field and solution of systems of algebraic equations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 137, 20–79 (1984)Google Scholar
  16. 16.
    Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appl. Math. 125(1), 105–119 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hauenstein, J.D., Pan, V.Y., Szanto, A.: Global Newton Iteration over Archimedean and non-Archimedean Fields - Full Version. arXiv:1404.5525Google Scholar
  18. 18.
    Hauenstein, J.D., Sottile, F.: Algorithm 921: alphaCertified: certifying solutions to polynomial systems. ACM Trans. Math. Software 38(4), Art. ID 28, 20 (2012)Google Scholar
  19. 19.
    Heintz, J., Krick, T., Puddu, S., Sabia, J., Waissbein, A.: Deformation techniques for efficient polynomial equation solving. J. Complexity 16(1), 70–109 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Heldt, D., Kreuzer, M., Pokutta, S., Poulisse, H.: Approximate computation of zero-dimensional polynomial ideals. J. Symbolic Comput. 44(11), 1566–1591 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Jeronimo, G., Krick, T., Sabia, J., Sombra, M.: The computational complexity of the Chow form. Found. Comput. Math. 4(1), 41–117 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Jeronimo, G., Perrucci, D.: On the minimum of a positive polynomial over the standard simplex. J. Symbolic Comput. 45(4), 434–442 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Kaltofen, E.: Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factorization. SIAM J. Comput. 14(2), 469–489 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kaltofen, E.: Sparse Hensel lifting. In: Caviness, B.F. (ed.) GI-Fachtagung 1973. LNCS, vol. 204, pp. 4–17. Springer, Berlin (1985)Google Scholar
  25. 25.
    Kannan, R., Lenstra, A.K., Lovász, L.: Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers. Math. Comp. 50(181), 235–250 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Karp, R., Ramachandran, V.: Parallel algorithms for shared-memory machines. In: Handbook of Theoretical Computer Science, vol. A, pp. 869–941. Elsevier (1990)Google Scholar
  27. 27.
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Lichtblau, D.: Exact computation using approximate Gröbner bases. available in the Wolfram electronic libraryGoogle Scholar
  29. 29.
    Mourrain, B., Trébuchet, P.: Stable normal forms for polynomial system solving. Theoret. Comput. Sci. 409(2), 229–240 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Pan, V.Y.: Parametrization of Newton’s iteration for computations with structured matrices and applications. Comput. Math. Appl. 24(3), 61–75 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms. Birkhäuser/Springer, Boston/New York (2001)CrossRefGoogle Scholar
  32. 32.
    Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. Journal of Applicable Algebra in Engineering, Communication and Computing 9(5), 433–461 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Shirayanagi, K.: An algorithm to compute floating point Groebner bases. In: Mathematical Computation with Maple V: Ideas and Applications, Ann Arbor, MI, pp. 95–106. Birkhäuser Boston, Boston (1993)CrossRefGoogle Scholar
  34. 34.
    Shirayanagi, K.: Floating point Gröbner bases. Math. Comput. Simulation 42(4-6), 509–528 (1996); Symbolic Computation, New Trends and Developments (Lille, 1993)Google Scholar
  35. 35.
    Stetter, H.J.: Numerical polynomial algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2004)CrossRefzbMATHGoogle Scholar
  36. 36.
    Traverso, C., Zanoni, A.: Numerical stability and stabilization of Groebner basis computation. In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pp. 262–269 (electronic). ACM, New York (2002)Google Scholar
  37. 37.
    Trinks, W.: On improving approximate results of buchberger’s algorithm by newton’s method. In: Caviness, B. (ed.) ISSAC 1985 and EUROCAL 1985. LNCS, vol. 204, pp. 608–612. Springer, Heidelberg (1985)Google Scholar
  38. 38.
    Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011)CrossRefzbMATHGoogle Scholar
  39. 39.
    Wampler, C.W., Larson, B., Edrman, A.: A new mobility formula for spatial mechanisms. In: Proc. DETC/Mechanisms & Robotics Conf., September 4-7 (2007)Google Scholar
  40. 40.
    Winkler, F.: A p-adic approach to the computation of Gröbner bases. J. Symbolic Comput. 6(2-3), 287–304 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Zassenhaus, H.: On Hensel factorization. I. J. Number Theory 1, 291–311 (1969)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jonathan D. Hauenstein
    • 1
  • Victor Y. Pan
    • 2
  • Agnes Szanto
    • 1
  1. 1.North Carolina State UniversityUSA
  2. 2.Lehman College - City University of New YorkUSA

Personalised recommendations