Advertisement

Interval Abstraction Refinement for Model Checking of Timed-Arc Petri Nets

  • Sine Viesmose Birch
  • Thomas Stig Jacobsen
  • Jacob Jon Jensen
  • Christoffer Moesgaard
  • Niels Nørgaard Samuelsen
  • Jiří Srba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8711)

Abstract

State-space explosion is a major obstacle in verification of time-critical distributed systems. An important factor with a negative influence on the tractability of the analysis is the size of constants that clocks are compared to. This problem is particularly accented in explicit state-space exploration techniques. We suggest an approximation method for reducing the size of constants present in the model. The proposed method is developed for Timed-Arc Petri Nets and creates an under-approximation or an over-approximation of the model behaviour. The verification of approximated Petri net models can be considerably faster but it does not in general guarantee conclusive answers. We implement the algorithms within the open-source model checker TAPAAL and demonstrate on a number of experiments that our approximation techniques often result in a significant speed-up of the verification.

Keywords

Model Check Time Automaton Task Schedule Algorithm Patient Monitoring System Urgent Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Itai, A., Kurshan, R., Yannakakis, M.: Timing verification by successive approximation. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 137–150. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Andersen, M., Gatten Larsen, H., Srba, J., Grund Sørensen, M., Haahr Taankvist, J.: Verification of liveness properties on closed timed-arc Petri nets. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS, vol. 7721, pp. 69–81. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 470–484. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS. In: IFIP WG 6.1 Tenth International Symposium on Protocol Specification, Testing and Verification, pp. 1–14. North-Holland, Amsterdam (1990)Google Scholar
  6. 6.
    Bozga, M., Maler, O., Tripakis, S.: Efficient verification of timed automata using dense and discrete time semantics. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 125–141. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Cicirelli, F., Furfaro, A., Nigro, L.: Model checking time-dependent system specifications using time stream Petri nets and UPPAAL. Applied Mathematics and Computation 218(16), 8160–8186 (2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  10. 10.
    David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.: TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    David, A., Jacobsen, L., Jacobsen, M., Srba, J.: A forward reachability algorithm for bounded timed-arc Petri nets. In: SSV 2012. EPTCS, vol. 102, pp. 125–140. Open Publishing Association (2012)Google Scholar
  12. 12.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Dill, D.L., Wong-Toi, H.: Verification of real-time systems by successive over and under approximation. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 409–422. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Drægert, A., Kaysen, A.C., Byrdal Kjær, J., Mikkelsen, F.B., Nduru, C., Petersen, D.S.: LEGO car safety systems. 5th Semester Software Engineer Project Report, Aalborg University (2014)Google Scholar
  15. 15.
    Hanisch, H.M.: Analysis of place/transition nets with timed-arcs and its application to batch process control. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691, pp. 282–299. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Jensen, P.G., Larsen, K.G., Srba, J., Sørensen, M.G., Taankvist, J.H.: Memory efficient data structures for explicit verification of timed systems. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 307–312. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Jørgensen, K.Y., Larsen, K.G., Srba, J.: Time-darts: A data structure for verification of closed timed automata. In: SSV 2012. EPTCS, vol. 102, pp. 141–155. Open Publishing Association (2012)Google Scholar
  18. 18.
    Marques Jr., A.P., Ravn, A.P., Srba, J., Vighio, S.: Model-checking web services business activity protocols. International Journal on Software Tools for Technology Transfer (STTT) 15(2), 125–147 (2013)CrossRefGoogle Scholar
  19. 19.
    Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Larsen, K.G., Behrmann, G., Skou, A.: Exercises for UPPAAL (2008), http://www.cs.aau.dk/~bnielsen/TOV08/ESV04/exercises
  21. 21.
    Lee, W., Pardo, A., Jang, J.-Y., Hachtel, G., Somenzi, F.: Tearing based automatic abstraction for CTL model checking. In: ICCAD 1996, pp. 76–81. IEEE Computer Society (1996)Google Scholar
  22. 22.
    Merlin, P.M., Faber, D.J.: Recoverability of communication protocols: Implications of a theoretical study. IEEE Trans. on Comm. 24(9), 1036–1043 (1976)CrossRefzbMATHGoogle Scholar
  23. 23.
    Murata, T.: State equation, controllability, and maximal matchings of Petri nets. IEEE Trans. on Automatic Control 22(3), 412–416 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Pardo, A., Hachtel, G.D.: Incremental CTL model checking using BDD subsetting. In: DAC 1998, pp. 457–462. ACM (1998)Google Scholar
  25. 25.
    Popova-Zeugmann, L.: On time Petri nets. Elektronische Informationsverarbeitung und Kybernetik 27(4), 227–244 (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sine Viesmose Birch
    • 1
  • Thomas Stig Jacobsen
    • 1
  • Jacob Jon Jensen
    • 1
  • Christoffer Moesgaard
    • 1
  • Niels Nørgaard Samuelsen
    • 1
  • Jiří Srba
    • 1
  1. 1.Department of Computer ScienceAalborg UniversityAalborg EastDenmark

Personalised recommendations