Advertisement

Combined Global and Local Search for the Falsification of Hybrid Systems

  • Jan Kuřátko
  • Stefan Ratschan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8711)

Abstract

In this paper we solve the problem of finding a trajectory that shows that a given hybrid dynamical system with deterministic evolution leaves a given set of states considered to be safe. The algorithm combines local with global search for achieving both efficiency and global convergence. In local search, it exploits derivatives for efficient computation. Unlike other methods for falsification of hybrid systems with deterministic evolution, we do not restrict our search to trajectories of a certain bounded length but search for error trajectories of arbitrary length.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbas, H., Fainekos, G.: Linear hybrid system falsification with descent. Technical Report arXiv:1105.1733 (2011)Google Scholar
  2. 2.
    Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-taLiRo: A tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM (1995)Google Scholar
  4. 4.
    Bertsekas, D.P.: Network optimization: continuous and discrete models. Athena Scientific Belmont (1998)Google Scholar
  5. 5.
    Betts, J.T.: Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics 21(2) (1998)Google Scholar
  6. 6.
    Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: Model and optimal control theory. IEEE Transactions on Automatic Control 43(1), 31–45 (1998)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Branicky, M.S., Curtiss, M.M., Levine, J., Morgan, S.: Sampling-based planning, control and verification of hybrid systems. IEE Proceedings-Control Theory and Applications 153(5), 575–590 (2006)CrossRefGoogle Scholar
  8. 8.
    Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid systems. Formal Methods in System Design 34(2), 183–213 (2009)CrossRefMATHGoogle Scholar
  9. 9.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Dzetkulič, T., Ratschan, S.: Incremental Computation of Succinct Abstractions for Hybrid Systems. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 271–285. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Edelkamp, S., Schuppan, V., Bošnački, D., Wijs, A., Fehnker, A., Aljazzar, H.: Survey on Directed Model Checking. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS, vol. 5348, pp. 65–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Fehnker, A., Ivančić, F.: Benchmarks for Hybrid Systems Verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Gendreau, M., Potvin, J.-Y. (eds.): Handbook of Metaheuristics, 2nd edn. Springer, Heidelberg (2010)MATHGoogle Scholar
  14. 14.
    Hiskens, I., Pai, M.: Trajectory sensitivity analysis of hybrid systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47(2), 204–220 (2000)CrossRefGoogle Scholar
  15. 15.
    Lamiraux, F., Ferré, E., Vallée, E.: Kinodynamic motion planning: connecting exploration trees using trajectory optimization methods. In: 2004 IEEE International Conference on Robotics and Automation, Proceedings. ICRA 2004, vol. 4, pp. 3987–3992. IEEE (2004)Google Scholar
  16. 16.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)Google Scholar
  17. 17.
    Locatelli, M., Schoen, F.: Global Optimization–Theory, Algorithms, and Applications. SIAM (2013)Google Scholar
  18. 18.
    Mosterman, P.J.: An overview of hybrid simulation phenomena and their support by simulation packages. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, p. 165. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivančić, F., Gupta, A., Pappas, G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems. In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2010, pp. 211–220. ACM, New York (2010)Google Scholar
  20. 20.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL safety properties in hybrid systems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 368–382. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: from verification to falsification by combining motion planning and discrete search. Formal Methods in System Design 34(2), 157–182 (2009)CrossRefMATHGoogle Scholar
  22. 22.
    Pohl, I.: Bi-directional search. Machine Intelligence 6, 124–140 (1971)MathSciNetGoogle Scholar
  23. 23.
    Ratschan, S., Smaus, J.-G.: Finding errors of hybrid systems by optimising an abstraction-based quality estimate. In: Dubois, C. (ed.) TAP 2009. LNCS, vol. 5668, pp. 153–168. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: A review of algorithms and comparison of software implementations. Journal of Global Optimization, 1–47 (2012)Google Scholar
  25. 25.
    Schoen, F.: Two-phase methods for global optimization. In: Pardalos, P., Romeijn, H. (eds.) Handbook of Global Optimization. Nonconvex Optimization and Its Applications, vol. 62, pp. 151–177. Springer, US (2002)CrossRefGoogle Scholar
  26. 26.
    Zutshi, A., Sankaranarayanan, S., Deshmukh, J.V., Kapinski, J.: A trajectory splicing approach to concretizing counterexamples for hybrid systems. In: CDC 2013 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jan Kuřátko
    • 1
    • 2
  • Stefan Ratschan
    • 1
  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicCzech Republic
  2. 2.Faculty of Mathematics and PhysicsCharles University in PragueCzech Republic

Personalised recommendations