Linked Data-based Conceptual Modelling for Recommendation: A FCA-Based Approach

  • Angel Castellanos
  • Ana García-Serrano
  • Juan Cigarrán
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 188)


In a recommendation task it is crucial to have an accurate content-based description of the users and the items. Linked Open Data (LOD) has been demonstrated as one of the best ways of obtaining this kind of content. The main question is to know how useful the LOD information is in inferring user preferences and how to obtain it. We propose a novel approach for Content Modelling and Recommendation based on Formal Concept Analysis (FCA). The approach is based in the modelling of the user and content related information, enriched with LOD, and in a new algorithm to analyze the models and recommend new content. The framework provided by the ESWC 2014 Recommendation Challenge is used for the evaluation. The results are within the average range of other participants, but further work has to be carried out to refine the approach using LOD information.


Linked Data Recommender Systems Formal Concept Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eswc 2014, recommendation challenge:
  2. 2.
    Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  3. 3.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  4. 4.
    Damljanovic, D., Stankovic, M., Laublet, P.: Linked data-based concept recommendation: Comparison of different methods in open innovation scenario. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 24–38. Springer, Heidelberg (2012)Google Scholar
  5. 5.
    Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proc. of the 8th Int. Conf. on Semantic Systems, pp. 1–8. ACM (2012)Google Scholar
  6. 6.
    du Boucher-Ryan, P., Bridge, D.: Collaborative recommending using formal concept analysis. Knowledge-Based Systems 19(5), 309–315 (2006)CrossRefGoogle Scholar
  7. 7.
    Ganter, B., Wille, R., Franzke, C.: Formal concept analysis: mathematical foundations. Springer (1997)Google Scholar
  8. 8.
    Li, X., Murata, T.: A knowledge-based recommendation model utilizing formal concept analysis and association. In: ICCAE, vol. 4, pp. 221–226 (2010)Google Scholar
  9. 9.
    Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-n recommendations from implicit feedback leveraging linked open data. In: Proc. of the 7th ACM Conference on Recommender Systems, RecSys 2013, NY, pp. 85–92 (2013)Google Scholar
  10. 10.
    Passant, A.: dbrec — music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Ricci, F., Shapira, B.: Recommender systems handbook. Springer (2011)Google Scholar
  12. 12.
    Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proc. of the 25th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 253–260. ACM, NY (2002)CrossRefGoogle Scholar
  13. 13.
    Senatore, S., Pasi, G.: Lattice navigation for collaborative filtering by means of (fuzzy) formal concept analysis. In: Proc. of the 28th Annual ACM Symposium on Applied Computing, SAC, pp. 920–926. ACM, NY (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Angel Castellanos
    • 1
  • Ana García-Serrano
    • 1
  • Juan Cigarrán
    • 1
  1. 1.ETSI InformáticaUniversidad Nacional de educación a Distancia (UNED)MadridSpain

Personalised recommendations