Advertisement

Quasinormal Modes Beyond Kerr

  • Aaron ZimmermanEmail author
  • Huan Yang
  • Zachary Mark
  • Yanbei Chen
  • Luis Lehner
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 40)

Abstract

The quasinormal modes (QNMs) of a black hole spacetime are the free, decaying oscillations of the spacetime, and are well understood in the case of Kerr black holes. We discuss a method for computing the QNMs of spacetimes which are slightly deformed from Kerr. We mention two example applications: the parametric, turbulent instability of scalar fields on a background which includes a gravitational QNM, and the shifts to the QNM frequencies of Kerr when the black hole is weakly charged. This method may be of use in studies of black holes which are deformed by external fields or are solutions to alternative theories of gravity.

Keywords

Quasinormal Modes (QNM) Black Hole Small Charge Limit KN Black Holes Spin-weighted Spheroidal Harmonics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Stephen Green and Rob Owen for useful conversations during the course of this work. AZ, HY, and YC were supported by NSF Grant PHY-1068881, CAREER Grant 0956189, and the David and Barbara Groce Startup Fund at Caltech. ZM was supported by the LIGO SURF program at Caltech. LL was supported by NSERC through Discovery Grants and CIFAR. This research was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

References

  1. A. Adams, P.M. Chesler, H. Liu, Phys. Rev. Lett. 112, 151602 (2014). doi:10.1103/PhysRevLett.112.151602Google Scholar
  2. E. Berti, V. Cardoso, A.O. Starinets, Class. Quantum Grav. 26(16), 163001 (2009). doi:10.1088/0264-9381/26/16/163001ADSCrossRefMathSciNetGoogle Scholar
  3. S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon Press, Oxford, 1983)zbMATHGoogle Scholar
  4. S.R. Green, F. Carrasco, L. Lehner, Phys. Rev. X4, 011001 (2014). doi:10.1103/PhysRevX.4.011001Google Scholar
  5. E. Leaver, Proc. R. Soc. Lond. A402, 285 (1985)ADSCrossRefMathSciNetGoogle Scholar
  6. E.W. Leaver, Phys. Rev. D41, 2986 (1990). doi:10.1103/PhysRevD.41.2986ADSMathSciNetGoogle Scholar
  7. E. Newman, R. Penrose, J. Math. Phys. 3, 566 (1962). doi:10.1063/1.1724257ADSCrossRefMathSciNetGoogle Scholar
  8. P. Pani, E. Berti, L. Gualtieri, Phys. Rev. Lett. 110(24), 241103 (2013a). doi:10.1103/PhysRevLett.110.241103ADSCrossRefGoogle Scholar
  9. P. Pani, E. Berti, L. Gualtieri, Phys. Rev. D88, 064048 (2013b). doi:10.1103/PhysRevD.88.064048ADSGoogle Scholar
  10. S.A. Teukolsky, Astrophys. J. 185, 635 (1973). doi:10.1086/152444ADSCrossRefMathSciNetGoogle Scholar
  11. H. Yang, A. Zimmerman, L. Lehner, Turbulent Black Holes (2014). arXiv:1402.4859Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aaron Zimmerman
    • 1
    Email author
  • Huan Yang
    • 2
    • 3
  • Zachary Mark
    • 4
    • 5
  • Yanbei Chen
    • 4
  • Luis Lehner
    • 2
  1. 1.Canadian Institute for Theoretical AstrophysicsTorontoCanada
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  4. 4.Theoretical Astrophysics 350-17California Institute of TechnologyPasadenaUSA
  5. 5.Department of Physics and AstronomyOberlinUSA

Personalised recommendations