Skip to main content

Environmental Applications of Chitosan and Its Derivatives

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 233

Abstract

Seafood processing waste is a potentially rich source of several useful products including chitin (Meanwell and Shama 2008), and has long been generated in large tonnages worldwide (Chang et al. 2007). Chitin is economical and is the second most abundant bio-waste material after cellulose (Shahidi et al. 1999). Annual worldwide chitin production from arthropods (e.g., crustaceans and insects), molluscs (e.g., squid and cuttlefish) and fungi is estimated at about 100 × 109 t (Tharanathan and Kittur 2003). A steady supply of chitinous waste materials from the seafood processing industry has been the major source of commercial products such as chitin and chitosan (Hayes 2012). The increasing consumption of krill oil and mushrooms has also been an additional source for commercial chitin (Nicol and Hosie 1993; Vetter 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi MM, Abdullah LC, Sadrolhosseini AR, Yunus WMM, Moksin MM, Tahir PM (2011) Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite. PLoS One 6:e24578

    CAS  Google Scholar 

  • Abdullah J, Ahmad M, Karuppiah N, Heng LY, Sidek H (2006) Immobilization of tyrosinase in chitosan film for an optical detection of phenol. Sens Actuators B 114:604–609

    CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risk of metals, 2nd edn. Springer, New York

    Google Scholar 

  • Ahmad A, Sumathi S, Hameed B (2005) Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: a comparative study. Chem Eng J 108:179–185

    CAS  Google Scholar 

  • Ahmad A, Sumathi S, Hameed B (2006) Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chem Eng J 118:99–105

    CAS  Google Scholar 

  • Aksu Z, Tatlı Aİ, Tunç Ö (2008) A comparative adsorption/biosorption study of Acid Blue 161: effect of temperature on equilibrium and kinetic parameters. Chem Eng J 142:23–39

    CAS  Google Scholar 

  • An J-H, Dultz S (2007) Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties. Appl Clay Sci 36:256–264

    CAS  Google Scholar 

  • An HK, Park BY, Kim DS (2001) Crab shell for the removal of heavy metals from aqueous solution. Water Res 35:3551–3556

    CAS  Google Scholar 

  • Annadurai G (2000) Design of optimum response surface experiments for adsorption of direct dye on chitosan. Bioproc Eng 23:451–455

    CAS  Google Scholar 

  • Annadurai G (2002) Adsorption of basic dye on strongly chelating polymer: batch kinetics studies. Iran Polym J 11:237–244

    CAS  Google Scholar 

  • Araki Y, Ito E (1975) A pathway of chitosan formation in Mucor rouxii. Eur J Biochem 55:71–78

    CAS  Google Scholar 

  • Assaad E, Azzouz A, Nistor D, Ursu A, Sajin T, Miron D, Monette F, Niquette P, Hausler R (2007) Metal removal through synergic coagulation–flocculation using an optimized chitosan–montmorillonite system. Appl Clay Sci 37:258–274

    CAS  Google Scholar 

  • Aucott M, Namboodiripad A, Caldarelli A, Frank K, Gross H (2010) Estimated quantities and trends of cadmium, lead, and mercury in US municipal solid waste based on analysis of incinerator ash. Water Air Soil Pollut 206:349–355

    CAS  Google Scholar 

  • Austin PR, Brine CJ, Castle JE, Zikakis JP (1981) Chitin: new facets of research. Science (NY) 212:749–753

    CAS  Google Scholar 

  • Baba Y, Hirakawa H, Kawano Y (1994) Selective adsorption of precious metals on sulfur-containing chitosan derivatives. Chem Lett 23:117–120

    Google Scholar 

  • Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56:290–299

    CAS  Google Scholar 

  • Bansiwal A, Thakre D, Labhshetwar N, Meshram S, Rayalu S (2009) Fluoride removal using lanthanum incorporated chitosan beads. Colloids Surf B Biointerfaces 74:216–224

    CAS  Google Scholar 

  • Barona A, Romero F (1996) Fractionation of lead in soils and its influence on the extractive cleaning with EDTA. Environ Technol 17:63–70

    CAS  Google Scholar 

  • Barona A, Aranguiz I, Elias A (1999) Zinc and copper distribution in soils and their removal by chelating extraction. J Chem Technol Biotechnol 74:700–708

    CAS  Google Scholar 

  • Barona A, Aranguiz I, Elıas A (2001) Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean-up procedures. Environ Pollut 113:79–85

    CAS  Google Scholar 

  • Barreiro-Iglesias R, Coronilla R, Concheiro A, Alvarez-Lorenzo C (2005) Preparation of chitosan beads by simultaneous cross-linking/insolubilisation in basic pH: rheological optimisation and drug loading/release behaviour. Eur J Pharm Sci 24:77–84

    CAS  Google Scholar 

  • Bassi R, Prasher SO, Simpson BK (2000) Removal of selected metal ions from aqueous solutions using chitosan flakes. Separ Sci Technol 35:547–560

    CAS  Google Scholar 

  • Bedner M, MacCrehan WA (2005) Transformation of acetaminophen by chlorination produces the toxicants 1,4-benzoquinone and N-acetyl-p-benzoquinone imine. Environ Sci Technol 40:516–522

    Google Scholar 

  • Benavente M, Moreno L, Martinez J (2011) Sorption of heavy metals from gold mining wastewater using chitosan. J Taiwan Inst Chem Eng 42:976–988

    CAS  Google Scholar 

  • Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    CAS  Google Scholar 

  • Bolan NS, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park JE, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? J Hazard Mater 266:141–166

    CAS  Google Scholar 

  • Bratskaya S, Schwarz S, Chervonetsky D (2004) Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate. Water Res 38:2955–2961

    CAS  Google Scholar 

  • Bratskaya SY, Ustinov AY, Azarova YA, Pestov AV (2011) Thiocarbamoyl chitosan: synthesis, characterization and sorption of Au(III), Pt(IV), and Pd(II). Carbohydr Polym 85:854–861

    CAS  Google Scholar 

  • Brett CMA (2001) Electrochemical sensors for environmental monitoring. Strategy and examples. Pure Appl Chem 73:1969–1977

    CAS  Google Scholar 

  • Cao Z, Ge H, Lai S (2001) Studies on synthesis and adsorption properties of chitosan cross-linked by glutaraldehyde and Cu (II) as template under microwave irradiation. Eur Polym J 37:2141–2143

    CAS  Google Scholar 

  • Cao ZY, Wei QF, Zhang QX (2004) Template synthesis and adsorption properties of chitosan salicylal Schiff bases. J Central South Univ Technol 11:169–172

    CAS  Google Scholar 

  • Cathell MD, Szewczyk JC, Bui FA, Weber CA, Wolever JD, Kang J, Schauer CL (2008) Structurally coloured thiol chitosan thin films as a platform for aqueous heavy metal ion detection. Biomacromolecules 9:289–295

    CAS  Google Scholar 

  • Celis R, Adelino MA, Hermosín MC, Cornejo J (2012) Montmorillonite–chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. J Hazard Mater 209–210:67–76

    Google Scholar 

  • Chang W-T, Chen Y-C, Jao C-L (2007) Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Biores Technol 98:1224–1230

    CAS  Google Scholar 

  • Chassary P, Vincent T, Guibal E (2004) Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. React Funct Polym 60:137–149

    CAS  Google Scholar 

  • Chatterjee S, Woo SH (2009) The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J Hazard Mater 164:1012–1018

    CAS  Google Scholar 

  • Chatterjee S, Chatterjee S, Chatterjee BP, Das AR, Guha AK (2005) Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads. J Colloid Interface Sci 288:30–35

    CAS  Google Scholar 

  • Chatterjee S, Chatterjee S, Chatterjee BP, Guha AK (2007) Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: binding mechanism, equilibrium and kinetics. Colloids Surf A Physicochem Eng Asp 299:146–152

    CAS  Google Scholar 

  • Chatterjee S, Lee DS, Lee MW, Woo SH (2009) Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate. J Hazard Mater 166:508–513

    CAS  Google Scholar 

  • Chequer FMD, de Oliveira GAR, Ferraz ERA, Cardoso JC, Zanoni MVB, de Oliveira DP (2013) Textile dyes: dyeing process and environmental impact. In: Günay M (ed) Eco-FRIENDLY TEXTILE DYEING AND FINISHING. InTech, Rijeka, pp 151–176

    Google Scholar 

  • Cheung WH, Szeto YS, McKay G (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Biores Technol 98:2897–2904

    CAS  Google Scholar 

  • Chiou M-S, Chuang G-S (2006) Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads. Chemosphere 62:731–740

    CAS  Google Scholar 

  • Chiou M-S, Li H-Y (2002) Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J Hazard Mater 93:233–248

    CAS  Google Scholar 

  • Chiou MS, Li HY (2003) Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50:1095–1105

    CAS  Google Scholar 

  • Chiou M-S, Kuo W-S, Li H-Y (2003) Removal of reactive dye from wastewater by adsorption using ECH cross-linked chitosan beads as medium. J Environ Sci Health A Toxicol Hazard Subst Environ Eng 38:2621–2631

    Google Scholar 

  • Chiou MS, Ho PY, Li HY (2004) Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes Pigments 60:69–84

    CAS  Google Scholar 

  • Choudhari SK, Kittur AA, Kulkarni SS, Kariduraganavar MY (2007) Development of novel blocked diisocyanate crosslinked chitosan membranes for pervaporation separation of water–isopropanol mixtures. J Membr Sci 302:197–206

    CAS  Google Scholar 

  • Chui VWD, Mok KW, Ng CY, Luong BP, Ma KK (1996) Removal and recovery of copper(II), chromium(III), and nickel(II) from solutions using crude shrimp chitin packed in small columns. Environ Int 22:463–468

    CAS  Google Scholar 

  • Constantine CA, Mello SV, Dupont A, Cao X, Santos D, Oliveira ON, Strixino FT, Pereira EC, Cheng T-C, Defrank JJ, Leblanc RM (2003) Layer-by-layer self-assembled chitosan/poly(thiophene-3-acetic acid) and organophosphorus hydrolase multilayers. J Am Chem Soc 125:1805–1809

    CAS  Google Scholar 

  • Cook MT, Tzortzis G, Khutoryanskiy VV, Charalampopoulos D (2013) Layer-by-layer coating of alginate matrices with chitosan-alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration. J Mater Chem B 1:52–60

    CAS  Google Scholar 

  • Coral-Hinostroza GN, Bjerkeng B (2002) Astaxanthin from the red crab langostilla (Pleuroncodes planipes): optical R/S isomers and fatty acid moieties of astaxanthin esters. Comp Biochem Physiol B 133:437–444

    Google Scholar 

  • Coughlin RW, Deshaies MR, Davis EM (2006) Chitosan in crab shell wastes purifies electroplating wastewater. Environ Progr 9:35–39

    Google Scholar 

  • Cuero RG (1996) Enhanced heavy metal immobilization by a bacterial-chitosan complex in soil. Biotechnol Lett 18:511–514

    CAS  Google Scholar 

  • Dambies L, Guimon C, Yiacoumi S, Guibal E (2001) Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloids Surf A Physicochem Eng Asp 177:203–214

    CAS  Google Scholar 

  • Dambies L, Vincent T, Guibal E (2002) Treatment of arsenic-containing solutions using chitosan derivatives: uptake mechanism and sorption performances. Water Res 36:3699–3710

    CAS  Google Scholar 

  • Dang QF, Yan JQ, Li JJ, Cheng XJ, Liu CS, Chen XG (2011) Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohydr Polym 83:171–178

    CAS  Google Scholar 

  • Dash M, Chiellini F, Ottenbrite R, Chiellini E (2011) Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    CAS  Google Scholar 

  • De La Noue J, Proulx D (1988) Biological tertiary treatment of urban wastewaters with chitosan-immunobilized Phormidium. Appl Microbiol Biotechnol 29:292–297

    Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technol 101:1611–1627

    CAS  Google Scholar 

  • Delezuk JAM, Cardoso MB, Domard A, Campana-Filho SP (2011) Ultrasound-assisted deacetylation of beta-chitin: influence of processing parameters. Polym Int 60:903–909

    CAS  Google Scholar 

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229

    CAS  Google Scholar 

  • Deng W, Tan Y, Li Y, Wen Y, Su Z, Huang Z, Huang S, Meng Y, Xie Q, Luo Y, Yao S (2010) Square wave voltammetric determination of Hg(II) using thiol functionalized chitosan-multiwalled carbon nanotubes nanocomposite film electrode. Microchimica Acta 169:367–373

    CAS  Google Scholar 

  • Denkbaş EB, Odabaşi M (2000) Chitosan microspheres and sponges: preparation and characterization. J Appl Polym Sci 76:1637–1643

    Google Scholar 

  • Desbrieres J, Bousquet C, Babak V (2010) Surfactant-chitosan interactions and application to emulsion stabilization. Cellulose Chem Technol 44:395

    CAS  Google Scholar 

  • Ding Y, Zhao Y, Tao X, Zheng Y-Z, Chen J-F (2009) Assembled alginate/chitosan micro-shells for removal of organic pollutants. Polymer 50:2841–2846

    CAS  Google Scholar 

  • Du D, Ding J, Cai J, Zhang A (2007a) Determination of carbaryl pesticide using amperometric acetylcholinesterase sensor formed by electrochemically deposited chitosan. Colloids Surf B Biointerfaces 58:145–150

    CAS  Google Scholar 

  • Du D, Huang X, Cai J, Zhang A (2007b) Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sensors Actuators B B127:531–535

    Google Scholar 

  • Du D, Huang X, Cai J, Zhang A, Ding J, Chen S (2007c) An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube-cross-linked chitosan composite. Anal Bioanal Chem 387:1059–1065

    CAS  Google Scholar 

  • Du WL, Xu ZR, Han XY, Xu YL, Miao ZG (2008) Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye. J Hazard Mater 153:152–156

    CAS  Google Scholar 

  • Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    CAS  Google Scholar 

  • Dykstra P, Hao J, Koev ST, Payne GF, Yu L, Ghodssi R (2009) An optical MEMS sensor utilizing a chitosan film for catechol detection. Sensors Actuators B 138:64–70

    CAS  Google Scholar 

  • Elliott HA, Brown GA (1989) Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water Air Soil Pollut 45:361–369

    CAS  Google Scholar 

  • Etemadi O, Petrisor IG, Kim D, Wan M-W, Yen TF (2003) Stabilization of metals in subsurface by biopolymers: laboratory drainage flow studies. Soil Sediment Contam 12:647–661

    CAS  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    CAS  Google Scholar 

  • Fahnestock KJ, Manesse M, McIlwee HA, Schauer CL, Boukherroub R, Szunerits S (2009) Selective detection of hexachromium ions by localized surface plasmon resonance measurements using gold nanoparticles/chitosan composite interfaces. Analyst 134:881–886

    CAS  Google Scholar 

  • Fan Q, Shan D, Xue H, He Y, Cosnier S (2007) Amperometric phenol biosensor based on laponite clay–chitosan nanocomposite matrix. Biosens Bioelectron 22:816–821

    CAS  Google Scholar 

  • Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26

    CAS  Google Scholar 

  • Fen YW, Yunus WMM, Yusof NA (2011) Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions. Sensor Lett 9:1704–1711

    CAS  Google Scholar 

  • Gecol H, Miakatsindila P, Ergican E, Hiibel SR (2006) Biopolymer coated clay particles for the adsorption of tungsten from water. Desalination 197:165–178

    CAS  Google Scholar 

  • Geetha Devi M, Shinoon Al-Hashmi ZS, Chandra Sekhar G (2012) Treatment of vegetable oil mill effluent using crab shell chitosan as adsorbent. Int J Environ Sci Technol 9:713–718

    CAS  Google Scholar 

  • Geng B, Jin Z, Li T, Qi X (2009a) Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water. Sci Tot Environ 407:4994–5000

    CAS  Google Scholar 

  • Geng B, Jin Z, Li T, Qi X (2009b) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75:825–830

    CAS  Google Scholar 

  • Gentili AR, Cubitto MA, Ferrero M, Rodriguéz MS (2006) Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. Int Biodeter Biodegrad 57:222–228

    CAS  Google Scholar 

  • Geremias R, Pedrosa R, Benassi J, Favere V, Stolberg J, Menezes C, Laranjeira M (2003) Remediation of coal mining wastewaters using chitosan microspheres. Environ Technol 24:1509–1515

    CAS  Google Scholar 

  • Gong R, Jiang Y, Cai W, Zhang K, Yuan B, Jiang J (2010) Enhanced sorption of bisphenol A on α-ketoglutaric acid-modified chitosan resins by hydrophobic sorption of hemimicelles. Desalination 258:54–58

    CAS  Google Scholar 

  • Gotoh T, Matsushima K, Kikuchi K-I (2004) Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere 55:135–140

    CAS  Google Scholar 

  • Goycoolea F-M, Higuera-Ciapara I, Hernandez G, Lizardi J, Garcia K-D (1997) Preparation of chitosan from squid (Loligo spp.) pen by a microwave-accelerated thermochemical process. Adv Chitin Sci 2:78–83

    CAS  Google Scholar 

  • Gray HC, Hutcheson PS, Slavin RG (2004) Is glucosamine safe in patients with seafood allergy? J Allergy CliImmunol 114:459–460

    Google Scholar 

  • Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci 30:71–109

    CAS  Google Scholar 

  • Guibal E, Roussy J (2007) Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). React Funct Polym 67:33–42

    CAS  Google Scholar 

  • Guibal E, Milot C, Tobin JM (1998) Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Indust Eng Chem Res 37:1454–1463

    Google Scholar 

  • Guibal E, Touraud E, Roussy J (2005) Chitosan interactions with metal ions and dyes: dissolved-state vs.solid-state application. World J Microbiol Biotechnol 21:913–920

    CAS  Google Scholar 

  • Guibal E, Van VM, Dempsey BA, Roussy J (2006) A review of the use of chitosan for the removal of particulate and dissolved contaminants. Sep Sci Technol 41:2487–2514

    CAS  Google Scholar 

  • Guo XY, Inoue K (2003) Elution of copper from vermiculite with environmentally benign reagents. Hydrometallurgy 70:9–21

    CAS  Google Scholar 

  • Guo Z, Hu X, Ao Y (2009) Effect of chitosan on the available contents and vertical distribution of Cu2+ and Cd2+ in different textural soils. J Hazard Mater 167:1148–1151

    CAS  Google Scholar 

  • Gupta A, Sankararamakrishnan N (2010) Column studies on the evaluation of novel spacer granules for the removal of arsenite and arsenate from contaminated water. Biores Technol 101:2173–2179

    CAS  Google Scholar 

  • Gupta A, Chauhan VS, Sankararamakrishnan N (2009) Preparation and evaluation of iron–chitosan composites for removal of As (III) and As (V) from arsenic contaminated real life groundwater. Water Res 43:3862–3870

    CAS  Google Scholar 

  • Gupta A, Yunus M, Sankararamakrishnan N (2012) Zerovalent iron encapsulated chitosan nanospheres – A novel adsorbent for the removal of total inorganic Arsenic from aqueous systems. Chemosphere 86:150–155

    CAS  Google Scholar 

  • Guzman J, Saucedo I, Navarro R, Revilla J, Guibal E (2002) Vanadium interactions with chitosan: influence of polymer protonation and metal speciation. Langmuir 18:1567–1573

    CAS  Google Scholar 

  • Hamdine M, Heuzey M-C, Bégin A (2005) Effect of organic and inorganic acids on concentrated chitosan solutions and gels. Int J Biol Macromol 37:134–142

    CAS  Google Scholar 

  • Han E, Shan D, Xue H, Cosnier S (2007) Hybrid material based on chitosan and layered double hydroxides: characterization and application to the design of amperometric phenol biosensor. Biomacromolecules 8:971–975

    CAS  Google Scholar 

  • Hanrahan G, Patil DG, Wang J (2004) Electrochemical sensors for environmental monitoring: design, development and applications. J Environ Monitor 6:657–664

    CAS  Google Scholar 

  • Hayes M (2012) Chitin, chitosan and their derivatives from marine rest raw materials: potential food and pharmaceutical applications. In: Hayes M (ed) Marine bioactive compounds: sources, characterization and applications. Springer, Berlin, pp 115–128

    Google Scholar 

  • Hirano S (2000) Chitin and Chitosan. In: Elvers B, Arpe H-J (eds) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 471–481

    Google Scholar 

  • Hirano S, Itakura C, Seino H, Akiyama Y, Nonaka I, Kanbara N, Kawakami T (1990) Chitosan as an ingredient for domestic animal feeds. J Ag Food Chem 38:1214–1217

    CAS  Google Scholar 

  • Hsien T-Y, Rorrer GL (1995) Effects of acylation and crosslinking on the material properties and cadmium ion adsorption capacity of porous chitosan beads. Sep Sci Technol 30:2455–2475

    CAS  Google Scholar 

  • Hu X, Wang R, Ao Y (2006) Effects of chitosan on soil physical and chemical properties. Turang Tongbao 37:68–72

    CAS  Google Scholar 

  • Huang R, Yang B, Liu Q, Ding K (2012) Removal of fluoride ions from aqueous solutions using protonated cross-linked chitosan particles. J Fluorine Chem 141:29–34

    CAS  Google Scholar 

  • Hulanicki A, Głab S, Ingman F (1991) Chemical sensors definitions and classification. Pure Appl Chem 63:1247–1250

    Google Scholar 

  • Ikeda Y, Poompradub S, Morita Y, Kohjiya S (2008) Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber. J Sol-Gel Sci Technol 45:299–306

    CAS  Google Scholar 

  • Ikehata K, Nicell JA (2008) Color and toxicity removal following tyrosinase-catalyzed oxidation of phenols. Biotechnol Prog 16:533–540

    Google Scholar 

  • Inoue K, Hirakawa H, Ishikawa Y, Yamaguchi T, Nagata J, Ohto K, Yoshizuka K (1996) Adsorption of metal ions on gallium(III)-templated oxine type of chemically modified chitosan. Sep Sci Technol 31:2273–2285

    CAS  Google Scholar 

  • Jaafari K, Elmaleh S, Coma J, Benkhouja K (2004) Equilibrium and kinetics of nitrate removal by protonated cross-linked chitosan. Water SA 27:9–14

    Google Scholar 

  • Jaiswal M, Chauhan D, Sankararamakrishnan N (2012) Copper chitosan nanocomposite: synthesis, characterization, and application in removal of organophosphorous pesticide from agricultural runoff. Environ Sci Pollut Res 19:2055–2062

    CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150

    CAS  Google Scholar 

  • Jeon C, Höll WH (2003) Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Res 37:4770–4780

    CAS  Google Scholar 

  • Jianlong W, Yi Q (1999) Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan-chitosan gels. Chemosphere 38:3109–3117

    CAS  Google Scholar 

  • Juang RS, Shao HJ (2002) A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Res 36:2999–3008

    CAS  Google Scholar 

  • Jung WJ, Kuk JH, Kim KY, Park RD (2005) Demineralization of red crab shell waste by lactic acid fermentation. Appl Microbiol Biotechnol 67:851–854

    CAS  Google Scholar 

  • Kamari A, Wan Ngah WS, Ken LL (2009) Chitosan and chemically modified chitosan beads for acid dyes sorption. J Environ Sci 21:296–302

    Google Scholar 

  • Kamari A, Pulford ID, Hargreaves JSJ (2011a) Chitosan as a potential amendment to remediate metal contaminated soil—a characterisation study. Colloids Surf B Biointerfaces 82:71–80

    CAS  Google Scholar 

  • Kamari A, Pulford ID, Hargreaves JSJ (2011b) Binding of heavy metal contaminants onto chitosans—an evaluation for remediation of metal contaminated soil and water. J Environ Manage 92:2675–2682

    CAS  Google Scholar 

  • Kamari A, Pulford I, Hargreaves J (2012) Metal accumulation in Lolium perenne and Brassica napus as affected by application of chitosans. Int J Phytoremed 14:894–907

    CAS  Google Scholar 

  • Karthikeyan G, Anbalagan K, Andal NM (2004) Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan. J Chem Sci 116:119–127

    CAS  Google Scholar 

  • Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    CAS  Google Scholar 

  • Khondee N, Tathong S, Pinyakong O, Powtongsook S, Chatchupong T, Ruangchainikom C, Luepromchai E (2012) Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater. J Hazard Mater 213–214:466–473

    Google Scholar 

  • Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    CAS  Google Scholar 

  • Kim DS (2003) The removal by crab shell of mixed heavy metal ions in aqueous solution. Biores Technol 87:355–357

    CAS  Google Scholar 

  • Kim HS (2004) Thermodynamic studies of interaction between chitosan and metal ions by isothermal titration calorimetry (I). J Indust Eng Chem 10:273–277

    CAS  Google Scholar 

  • Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2007) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21

    CAS  Google Scholar 

  • Kimura Y, Yamamoto M, Shimazaki R, Kashiwada A, Matsuda K, Yamada K (2012) Use of chitosan for removal of bisphenol a from aqueous solutions through quinone oxidation by polyphenol oxidase. J Appl Polymer Sci 124:796–804

    CAS  Google Scholar 

  • Klepka MT, Nedelko N, Greneche J-M, Lawniczak-Jablonska K, Demchenko IN, Slawska-Waniewska A, Rodrigues CA, Debrassi A, Bordini C (2008) Local atomic structure and magnetic ordering of iron in Fe−chitosan complexes. Biomacromolecules 9:1586–1594

    CAS  Google Scholar 

  • Knox AS, Paller MH, Reible DD, Xingmao M, Petrisor IG (2008) Sequestering agents for active caps—Remediation of metals and organics. Soil Sediment Contamination 17:516–532

    CAS  Google Scholar 

  • Konaganti VK, Kota R, Patil S, Madras G (2010) Adsorption of anionic dyes on chitosan grafted poly(alkyl methacrylate)s. Chem Eng J 158:393–401

    CAS  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    CAS  Google Scholar 

  • Krajewska B (2004) Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35:126–139

    CAS  Google Scholar 

  • Kwon S, Thomas J, Reed BE, Levine L, Magar VS, Farrar D, Bridges TS, Ghosh U (2010) Evaluation of sorbent amendments for in situ remediation of metal-contaminated sediments. Environ Toxicol Chem 29:1883–1892

    CAS  Google Scholar 

  • Lazaridis NK, Keenan H (2010) Chitosan beads as barriers to the transport of azo dye in soil column. J Hazard Mater 173:144–150

    CAS  Google Scholar 

  • Leung H-W (2001) Ecotoxicology of glutaraldehyde: review of environmental fate and effects studies. Ecotoxicol Environ Saf 49:26–39

    CAS  Google Scholar 

  • Li Y-F, Liu Z-M, Liu Y-L, Yang Y-H, Shen G-L, Yu R-Q (2006) A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Anal Biochem 349:33–40

    CAS  Google Scholar 

  • Li Z, Wang G, Meng Y, Zhang D (2008) Research on the enhanced effect of chitosan on extraction of cadmium from contaminated soil. Anquan Yu Huanjing Xuebao 8:51–54

    CAS  Google Scholar 

  • Li Z, Meng Y, Wang T, Zhang D (2009) Enhanced extraction of chitosan for chromium (VI) from contaminated soil. Turang Tongbao 40:660–663

    CAS  Google Scholar 

  • Li Q, Chai L, Wang Q, Yang Z, Yan H, Wang Y (2010) Fast esterification of spent grain for enhanced heavy metal ions adsorption. Biores Technol 101:3796–3799

    CAS  Google Scholar 

  • Liao Z, Tao T, Guo J, He Q, Zou L, Jiang W, Shen P, Wang P, Yang X, Long B, Zhou J, Yang S (2010) Soil remediation with chitosan and permeable reacting barrier. Chinese patent No. 101829673. Jiangxi JDL Environmental Protection Research Ltd, Nanchang

    Google Scholar 

  • Lim SH, Hudson SM (2003) Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci Polym Rev 43:223–269

    Google Scholar 

  • Lin CC, Lin HL (2005) Remediation of soil contaminated with the heavy metal (Cd2+). J Hazard Mater 122:7–15

    CAS  Google Scholar 

  • Lin S, Chang C-C, Lin C-W, Leu T-H, Li J-D, Hong S-W, Wang T-M, Huang S-C, Lu T-W, Ghoshuni M (2012) A reversible optical sensor based on chitosan film for the selective detection of copper ions. Biomed Eng Appl Basis Commun 24:295–305

    Google Scholar 

  • Liu ZM, Wang H, Yang Y, Yang HF, Hu SQ, Shen GL, Yu RQ (2004) Amperometric tyrosinase biosensor using enzyme-labeled Au colloids immobilized on cystamine/chitosan modified gold surface. Analyt Lett 37:1079–1091

    CAS  Google Scholar 

  • Liu L, Shu J, Yang Z (2006a) Effects of chitosan and EDTA on Lead desorption in Pb contaminated soil. Nongye Huanjing Kexue Xuebao 25:345–348

    CAS  Google Scholar 

  • Liu LD, Zhang WA, Shu JL, Yang ZK, Wang YT (2006b) The potential of corn (Zea mays L.) for phytoremediation of Pb-contaminated soils with the aid of chitosan addition. Shengtai Duli Xuebao 1:271–277

    Google Scholar 

  • Liu T, Zhao L, Sun D, Tan X (2010) Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. J Hazard Mater 184:724–730

    CAS  Google Scholar 

  • Loh KS, Lee YH, Musa A, Salmah AA, Zamri I (2008a) Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors 8:5775–5791

    CAS  Google Scholar 

  • Loh SK, Lee HY, Musa A, Salmah AA, Zamri I (2008b) Evaluation of pesticide and heavy metal toxicity using immobilized enzyme alkaline phosphatase with an electrochemical biosensor. Asian J Biochem 3:359–365

    Google Scholar 

  • Lü R, Cao Z, Shen G (2008) Comparative study on interaction between copper (II) and chitin/chitosan by density functional calculation. J Mol Struct (THEOCHEM) 860:80–85

    Google Scholar 

  • Mahmoud NS, Ghaly AE, Arab F (2007) Unconventional approach for demineralization of deproteinized crustacean shells for chitin production. Am J Biochem Biotechnol 3:1–9

    CAS  Google Scholar 

  • Mazengarb S, Roberts GA (2009) Studies on the diffusion of direct dyes in chitosan film. In: Jaworska MM (ed) Progress on Chemistry and Application of Chitin and Its derivatives. Media, Lodz, pp 25–32

    Google Scholar 

  • McIlwee HA, Schauer CL, Praig VG, Boukherroub R, Szunerits S (2008) Thin chitosan films as a platform for SPR sensing of ferric ions. Analyst 133:673–677

    CAS  Google Scholar 

  • Meanwell RJL, Shama G (2008) Production of streptomycin from chitin using Streptomyces griseus in bioreactors of different configuration. Biores Technol 99:5634–5639

    CAS  Google Scholar 

  • Mench MJ, Didier VL, Löffler M, Gomez A, Masson P (1994) A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J Environ Qual 23:58–63

    CAS  Google Scholar 

  • Meng Q, He C, Su W, Zhang X, Duan C (2012) A new rhodamine–chitosan fluorescent material for the selective detection of Hg2+ in living cells and efficient adsorption of Hg2+ in natural water. Sens Actuators B 174:312–317

    CAS  Google Scholar 

  • Methacanon P, Prasitsilp M, Pothsree T, Pattaraarchachai J (2003) Heterogeneous N-deacetylation of squid chitin in alkaline solution. Carbohydr Polym 52:119–123

    CAS  Google Scholar 

  • Milot C, McBrien J, Allen S, Guibal E (1998) Influence of physicochemical and structural characteristics of chitosan flakes on molybdate sorption. J Appl Polym Sci 68:571–580

    CAS  Google Scholar 

  • Minami S, Oh-oka M, Okamoto Y, Miyatake K, Matsuhashi A, Shigemasa Y, Fukumoto Y (1996) Chitosan-inducing hemorrhagic pneumonia in dogs. Carbohydr Polym 29:241–246

    CAS  Google Scholar 

  • Miretzky P, Cirelli AF (2009) Hg(II) removal from water by chitosan and chitosan derivatives: a review. J Hazard Mater 167:10–23

    CAS  Google Scholar 

  • Miretzky P, Cirelli AF (2011) Fluoride removal from water by chitosan derivatives and composites: a review. J Fluorine Chem 132:231–240

    CAS  Google Scholar 

  • Muzzarelli RAA (1973) Natural chelating polymers: alginic acid, chitin, and chitosan, 1st edn. Pergamon, Oxford

    Google Scholar 

  • Muzzarelli R (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77:1–9

    CAS  Google Scholar 

  • Muzzarelli R (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8:292–312

    CAS  Google Scholar 

  • Muzzarelli R (2011) Potential of chitin/chitosan-bearing materials for uranium recovery: an interdisciplinary review. Carbohydr Polym 84:54–63

    CAS  Google Scholar 

  • Muzzarelli C, Muzzarelli RAA (2003) Chitin related food science today (and two centuries ago). Agro Food Indust Hi Tech 1:39–42

    Google Scholar 

  • Muzzarelli R, Tanfani F (1982) N-(O-Carboxybenzyl) chitosan, N-carboxymethyl chitosan, and chitosan dithiocarbamate: new chelating derivatives of chitosan. Pure Appl Chem 54:2141–2150

    CAS  Google Scholar 

  • Muzzarelli RAA, Jenieux R, Gooday GW (1986) Chitin in nature and technology. Plenum, New York

    Google Scholar 

  • Navarro R, Guzmán J, Saucedo I, Revilla J, Guibal E (2003) Recovery of metal ions by chitosan: sorption mechanisms and influence of metal speciation. Macromol Biosci 3:552–561

    CAS  Google Scholar 

  • Ng J, Cheung W, McKay G (2002) Equilibrium studies of the sorption of Cu (II) ions onto chitosan. J Colloid Interface Sci 255:64–74

    CAS  Google Scholar 

  • Ng J, Cheung W, McKay G (2003) Equilibrium studies for the sorption of lead from effluents using chitosan. Chemosphere 52:1021–1030

    CAS  Google Scholar 

  • Nicol S, Hosie GW (1993) Chitin production by krill. Biochem Syst Ecol 21:181–184

    CAS  Google Scholar 

  • Nidheesh P, Gandhimathi R, Ramesh S (2013) Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res 20(4):2099–132

    CAS  Google Scholar 

  • Niu CH, Volesky B (2007) Modeling chromium (VI) biosorption by acid washed crab shells. AIChE J 53:1056–1059

    CAS  Google Scholar 

  • Ogawa K, Oka K, Yui T (1993) X-ray study of chitosan-transition metal complexes. Chem Mater 5:726–728

    CAS  Google Scholar 

  • Oshita K, Oshima M, Gao YH, Lee KH, Motomizu S (2002) Adsorption behavior of mercury and precious metals on cross-linked chitosan and the removal of ultratrace amounts of mercury in concentrated hydrochloric acid by a column treatment with cross-linked chitosan. Anal Sci 18:1121–1125

    CAS  Google Scholar 

  • Osifo PO, Webster A, van der Merwe H, Neomagus HWJP, van der Gun MA, Grant DM (2008) The influence of the degree of cross-linking on the adsorption properties of chitosan beads. Biores Technol 99:7377–7382

    CAS  Google Scholar 

  • Pan J, Yao H, Li X, Wang B, Huo P, Xu W, Ou H, Yan Y (2011) Synthesis of chitosan/γ-Fe2O3/fly-ash-cenospheres composites for the fast removal of bisphenol A and 2,4,6-trichlorophenol from aqueous solutions. J Hazard Mater 190:276–284

    CAS  Google Scholar 

  • Park S, Kwon O, Choi C, Kim C-J (2000) Glucosamine-mediated detoxification of p-benzoquinone and its removal by chitosan. Biotechnol Lett 22:21–24

    CAS  Google Scholar 

  • Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung J-W (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185:549–574

    CAS  Google Scholar 

  • Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    CAS  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    CAS  Google Scholar 

  • Peniche C, Argüelles-Monal W, Goycoolea FM (2008) Chitin and chitosan: major sources, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers. Polymers and Composites from Renewable Resources, Elsevier, Amsterdam, pp 517–542

    Google Scholar 

  • Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Progr in Polym Sci 34:641–678

    CAS  Google Scholar 

  • Piron E, Domard A (1998) Interaction between chitosan and uranyl ions. Part 2. Mechanism of interaction. Int J Biol Macromol 22:33–40

    CAS  Google Scholar 

  • Pohanish RP (2008) Sittig’s handbook of toxic and hazardous chemicals and carcinogens, 5th edn. William Andrew Inc, New York

    Google Scholar 

  • Praig VG, McIlwee H, Schauer CL, Boukherroub R, Szunerits A (2009) Localized surface plasmon resonance of gold nanoparticle-modified chitosan films for heavy-metal ions sensing. J Nanosci Nanotechnol 9:350–357

    CAS  Google Scholar 

  • Prajapati BG (2009) Chitosan a marine medical polymer and its lipid lowering capacity. Internet J Health 9:1–7

    Google Scholar 

  • Qi L, Xu Z (2004) Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids Surf A Physicochem Eng Asp 251:183–190

    CAS  Google Scholar 

  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    CAS  Google Scholar 

  • Radhakumary C, Sreenivasan K (2012) Rapid and highly selective dipchecking for cyanide ions in aqueous media. Analyst 137:5387–5391

    CAS  Google Scholar 

  • Rao MS, Stevens WF (2005) Chitin production by Lactobacillus fermentation of shrimp biowaste in a drum reactor and its chemical conversion to chitosan. J Chem Technol Biotechnol 80:1080–1087

    CAS  Google Scholar 

  • Ratajska M, Boryniec S (1998) Physical and chemical aspects of biodegradation of natural polymers. React Funct Polym 38:35–49

    CAS  Google Scholar 

  • Rayalu SS, Kamble SP, Jagtap S, Labhsetwar NK, Thakare D, Godfrey S, Devotta S (2007) Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan. Chem Eng J 129:173–180

    Google Scholar 

  • Rhazi M, Desbrières J, Tolaimate A, Alagui A, Vottero P (2000) Investigation of different natural sources of chitin: influence of the source and deacetylation process on the physicochemical characteristics of chitosan. Polym Int 49:337–344

    CAS  Google Scholar 

  • Rhazi M, Desbrières J, Tolaimate A, Rinaudo M, Vottero P, Alagui A, El Meray M (2002) Influence of the nature of the metal ions on the complexation with chitosan: application to the treatment of liquid waste. Eur Polym J 38:1523–1530

    CAS  Google Scholar 

  • Richardson SD, Postigo C (2012) Drinking water disinfection by-products. Springer, Emerging Organic Contaminants and Human Health, pp 93–137

    Google Scholar 

  • Roberts GAF (1992) Chitin chemistry. Macmillan, London

    Google Scholar 

  • Roberts GAF (2008) Thirty years of progress in chitin and chitosan. In: Jaworska MM (ed), Progress on chemistry and application of chitin and its derivatives, pp 7-15

    Google Scholar 

  • Romanazzi G, Lichter A, Gabler FM, Smilanick JL (2012) Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol Technol 63:141–147

    CAS  Google Scholar 

  • Rorrer GL, Hsien TY, Way JD (1993) Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from wastewater. Indust Eng Chem Res 32:2170–2178

    CAS  Google Scholar 

  • Rupani PF, Singh RP, Ibrahim MH, Esa N (2010) Review of current palm oil mill effluent (POME) treatment methods: vermicomposting as a sustainable practice. World Appl Sci J 11:70–81

    CAS  Google Scholar 

  • Sahin M, Kocak N, Arslan G, Ucan H (2011) Synthesis of crosslinked chitosan with epichlorohydrin possessing two novel polymeric ligands and Its use in metal removal. J Inorg Organometallic Polym Mater 21:69–80

    CAS  Google Scholar 

  • Saifullah, Ghafoor A, Zia MH, Murtaza G, Waraich EA, Bibi S, Srivastava P (2010) Comparison of organic and inorganic amendments for enhancing soil lead phytoextraction by wheat (Triticum aestivum L.). Int J Phytoremediation 12:633–649

    CAS  Google Scholar 

  • Sankararamakrishnan N, Dixit A, Iyengar L, Sanghi R (2006) Removal of hexavalent chromium using a novel cross linked xanthated chitosan. Biores Technol 97:2377–2382

    CAS  Google Scholar 

  • Sannan T, Kurita K, Iwakura Y (1976) Studies on chitin, 2. Effect of deacetylation on solubility. Die Makromolekulare Chemie 177:3589–3600

    CAS  Google Scholar 

  • Santhosh S, Sini TK, Mathew PT (2010) Variation in properties of chitosan prepared at different alkali concentrations from squid pen and shrimp shell. Int J Polym Mater 59:286–291

    CAS  Google Scholar 

  • Sarma SJ, Pakshirajan K, Mahanty B (2011) Chitosan-coated alginate–polyvinyl alcohol beads for encapsulation of silicone oil containing pyrene: a novel method for biodegradation of polycyclic aromatic hydrocarbons. J Chem Technol Biotechnol 86:266–272

    CAS  Google Scholar 

  • Schauer CL, Chen M-S, Price RR, Schoen PE, Ligler FS (2004) Colored thin films for specific metal ion detection. Environ Sci Technol 38:4409–4413

    CAS  Google Scholar 

  • Setti L, Mazzieri S, Pifferi PG (1999) Enhanced degradation of heavy oil in an aqueous system by a Pseudomonas sp. in the presence of natural and synthetic sorbents. Biores Technol 67:191–199

    CAS  Google Scholar 

  • Shafaei A, Ashtiani FZ, Kaghazchi T (2007) Equilibrium studies of the sorption of Hg (II) ions onto chitosan. Chem Eng J 133:311–316

    CAS  Google Scholar 

  • Shahidi F, Arachchi JKV, Jeon Y-J (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51

    CAS  Google Scholar 

  • Shao J, Ge H, Yang Y (2007) Immobilization of polyphenol oxidase on chitosan–SiO2 gel for removal of aqueous phenol. Biotechnol Lett 29:901–905

    CAS  Google Scholar 

  • Shukla SR, Pai RS (2005) Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust. Separ Purif Technol 43:1–8

    CAS  Google Scholar 

  • Si Y, Zhang J, Si X, Peng J (2010) Microbe-immobilized granules for remediation of pesticide-contaminated soil. Chinese patent No. 101701216. Anhui Agricultural University

    Google Scholar 

  • Sklyar AM, Gamzazade AI, Rogovina LZ, Titkova LV, Pavlova SSA, Rogozhin SV, Slonimskii GL (1981) Study of rheological properties of dilute and moderately concentrated solutions of chitosan. Polymer Sci (USSR) 23:1546–1554

    Google Scholar 

  • Srivastava P, Singh B, Angove M (2005) Competitive adsorption behavior of heavy metals on kaolinite. J Colloids Interface Sci 290:28–38

    CAS  Google Scholar 

  • Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340

    CAS  Google Scholar 

  • Sun S, Wang L, Wang A (2006) Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(II) as template ions. J Hazard Mater 136:930–937

    CAS  Google Scholar 

  • Suzuki M (1993) Complex of chitosan and cellulose fibers. Japanese patent No. 05228176. Nippon Kyushutai Gijutsu Kenky

    Google Scholar 

  • Suzuki M, Sugiyama T, Musashi E, Kobiyama Y, Kashiwada A, Matsuda K, Yamada K (2010) Use of chitosan for removal of bisphenol A and bisphenol derivatives through tyrosinase-catalyzed quinone oxidation. J Appl Polym Sci 118:721–732

    CAS  Google Scholar 

  • Szyguła A, Guibal E, Ruiz M, Sastre AM (2008) The removal of sulphonated azo-dyes by coagulation with chitosan. Colloids Surf A Physicochem Eng Asp 330:219–226

    Google Scholar 

  • Tahtat D, Uzun C, Mahlous M, Güven O (2007) Beneficial effect of gamma irradiation on the N-deacetylation of chitin to form chitosan. Nucl Instrum Methods Phys Res B 265:425–428

    CAS  Google Scholar 

  • Tang L, Zeng G-M, Shen G-L, Li Y-P, Zhang Y, Huang D-L (2008) Rapid detection of Picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environ Sci Technol 42:1207–1212

    CAS  Google Scholar 

  • Tay CC, Liew HH, Redzwan G, Yong SK, Surif S, Abdul-Talib S (2011a) Pleurotus ostreatus spent mushroom compost as green biosorbent for nickel (II) biosorption. Water Sci Technol 64:2425–2432

    CAS  Google Scholar 

  • Tay CC, Liew HH, Yin C-Y, Abdul-Talib S, Surif S, Suhaimi A, Yong SK (2011b) Biosorption of cadmium ions using & Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism. Kor J Chem Eng 28:825–830

    CAS  Google Scholar 

  • Tay CC, Liew HH, Yong SK, Surif S, Redzwan G, Abdul-Talib S (2012) Cu(II) removal onto fungal derived biosorbents: biosorption performance and the half saturation constant concentration approach. Int J Res Chem Environ 2:138–143

    CAS  Google Scholar 

  • Tee Y-H, Bhattacharyya D (2008) Chitosan membranes with nanoparticles for remediation of chlorinated organics. In: Li NN, Fane AG, Ho WSW, Matsuura T (eds) Advanced membrane technology and applications. Wiley, Hoboken, pp 189–216

    Google Scholar 

  • Teng WL, Khor E, Tan TK, Lim LY, Tan SC (2001) Concurrent production of chitin from shrimp shells and fungi. Carbohydr Res 332:305–316

    CAS  Google Scholar 

  • Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87

    CAS  Google Scholar 

  • Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575

    CAS  Google Scholar 

  • Trung T, Ng C-H, Stevens W (2003) Characterization of decrystallized chitosan and its application in biosorption of textile dyes. Biotechnol Lett 25:1185–1190

    CAS  Google Scholar 

  • Tsigos I, Martinou A, Kafetzopoulos D, Bouriotis V (2000) Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol 18:305–312

    CAS  Google Scholar 

  • Ummadisingu A, Gupta S (2012) Characteristics and kinetic study of chitosan prepared from seafood industry waste for oil spills cleanup. Desalination Water Treatment 44:44–51

    CAS  Google Scholar 

  • Uragami T, Yoshida F, Sugihara M (1983) Studies of synthesis and permeabilities of special polymer membranes. LI. Active transport of halogen ions through chitosan membranes. J Appl Polym Sci 28:1361–1370

    CAS  Google Scholar 

  • Uthairatanakij A, da Silva JAT, Obsuwan K (2007) Chitosan for improving orchid production and quality. Orchid Sci Biotechnol 1:1–5

    Google Scholar 

  • Uzun İ, Güzel F (2004) Kinetics and thermodynamics of the adsorption of some dyestuffs and p-nitrophenol by chitosan and MCM-chitosan from aqueous solution. J Colloid Interface Sci 274:398–412

    CAS  Google Scholar 

  • Vetter J (2007) Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Food Chem 102:6–9

    CAS  Google Scholar 

  • Vieira RS, Oliveira MLM, Guibal E, Rodríguez-Castellón E, Beppu MM (2011) Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism. Colloids Surf A Physicochem Eng Asp 374:108–114

    CAS  Google Scholar 

  • Vold IMN, Vårum KM, Guibal E, Smidsrød O (2003) Binding of ions to chitosan–selectivity studies. Carbohydr Polym 54:471–477

    CAS  Google Scholar 

  • Waibel KH, Haney B, Moore M, Whisman B, Gomez R (2011) Safety of chitosan bandages in shellfish allergic patients. Mil Med 176:1153–1156

    Google Scholar 

  • Walker GM, Weatherley LR (2001) Adsorption of dyes from aqueous solution — the effect of adsorbent pore size distribution and dye aggregation. Chem Eng J83:201–206

    Google Scholar 

  • Walsh AM, Sweeney T, Bahar B, O’Doherty JV (2013) Multi-functional roles of chitosan as a potential protective agent against obesity. PLoS One 8:e53828

    CAS  Google Scholar 

  • Wan Ngah WS, Fatinathan S (2010) Pb(II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange and mechanism studies. J Environ Sci 22:338–346

    Google Scholar 

  • Wan Ngah WS, Musa A (1998) Adsorption of humic acid onto chitin and chitosan. J Appl Polym Sci 69:2305–2310

    CAS  Google Scholar 

  • Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456

    CAS  Google Scholar 

  • Wan MW, Petrisor IG, Lai HT, Kim D, Yen TF (2004) Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ soil decontamination. Carbohydr Polym 55:249–254

    CAS  Google Scholar 

  • Wang L, Wang A (2008) Adsorption properties of congo red from aqueous solution onto N, O-carboxymethyl-chitosan. Biores Technol 99:1403–1408

    CAS  Google Scholar 

  • Wang QZ, Chen XG, Liu N, Wang SX, Liu CS, Meng XH, Liu CG (2006) Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydr Polym 65:194–201

    CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007) Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens—a field case. Environ Pollut 147:248–255

    CAS  Google Scholar 

  • Wang S, Tan Y, Zhao D, Liu G (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite. Biosens Bioelectron 23:1781–1787

    CAS  Google Scholar 

  • Wang L, Xing R, Liu S, Qin Y, Li K, Yu H, Li R, Li P (2010a) Studies on adsorption behavior of Pb(II) onto a thiourea-modified chitosan resin with Pb(II) as template. Carbohydr Polym 81:305–310

    CAS  Google Scholar 

  • Wang S, Lei Y, Zhang Y, Tang J, Shen G, Yu R (2010b) Hydroxyapatite nanoarray-based cyanide biosensor. Anal Biochem 398:191–197

    CAS  Google Scholar 

  • Wang SL, Liang TW, Yen YH (2011) Bioconversion of chitin-containing wastes for the production of enzymes and bioactive materials. Carbohydr Polym 84:732–742

    CAS  Google Scholar 

  • Wang X, Su Y, Yang H, Dong Z, Ma J (2012) Highly sensitive fluorescence probe based on chitosan nanoparticle for selective detection of Hg2+ in water. Colloids Surf A Physicochem Eng Asp 11:88–93

    Google Scholar 

  • Weng G, Wang Z, Wu L, Luo Y, Song J, Qian W, Lin Q, Wang F, Jiang Y, Dai X, Qiu X (2005) Effect of degradable chelate and microbial preparation on the phytoremediation of contaminated soil by Elsholtzia splendens. Turang 37:152–157

    CAS  Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2000) Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes. J Hazard Mater 73:63–75

    CAS  Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2010) A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manage 91:798–806

    CAS  Google Scholar 

  • Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids 25:170–179

    CAS  Google Scholar 

  • Xu R, Yong LC, Lim YG, Obbard JP (2005) Use of slow-release fertilizer and biopolymers for stimulating hydrocarbon biodegradation in oil-contaminated beach sediments. Mar Pollut Bull 51:1101–1110

    CAS  Google Scholar 

  • Xu D, Hein S, Loo SL, Wang K (2008) The fixed-bed study of dye removal on chitosan beads at high pH. Indust Eng Chem Res 47:8796–8800

    CAS  Google Scholar 

  • Xu R, Zhou Q, Li F, Zhang B (2013) Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chem Eng J 222:321–329

    CAS  Google Scholar 

  • Yamada K, Akiba Y, Shibuya T, Kashiwada A, Matsuda K, Hirata M (2005) Water purification through bioconversion of phenol compounds by tyrosinase and chemical adsorption by chitosan beads. Biotechnol Prog 21:823–829

    CAS  Google Scholar 

  • Yamamoto H, Amaike M (1997) Biodegradation of cross-linked chitosan gels by a microorganism. Macromolecules 30:3936–3937

    CAS  Google Scholar 

  • Yan WL, Bai R (2005) Adsorption of lead and humic acid on chitosan hydrogel beads. Water Res 39:688–698

    CAS  Google Scholar 

  • Yang ZK, Shu JL, Liu LD (2006) Enhanced phytoremediation of lead-contaminated soils by chitosan chelating agent. Nongye Huanjing Kexue Xuebao 25:86–89

    Google Scholar 

  • Yong SK, Wong TW (2013) Chitosan for body weight management: current issues and future directions. In: Kim S-K (ed) Marine nutraceuticals: prospects and perspect. CRC, Boca Raton, pp 151–168

    Google Scholar 

  • Yong SK, Bolan NS, Lombi E, Skinner W, Guibal E (2012) Sulfur-containing chitin and chitosan derivatives as trace metal adsorbents: a review. Crit Rev Environ Sci Technol 43:1741–1794

    Google Scholar 

  • Yong SK, Bolan NS, Lombi E, Skinner W (2013) Synthesis and characterization of thiolated chitosan beads for removal of Cu(II) and Cd(II) from wastewater. Water Air Soil Pollut 224:1–12

    CAS  Google Scholar 

  • Youn DK, No HK, Prinyawiwatkul W (2007) Physical characteristics of decolorized chitosan as affected by sun drying during chitosan preparation. Carbohydr Polym 69:707–712

    CAS  Google Scholar 

  • Yu JCC, Lai EPC, Sadeghi S (2004) Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole. Sens Actuators B 101:236–241

    CAS  Google Scholar 

  • Zainal Z, Hui LK, Hussein MZ, Abdullah AH, Hamadneh IR (2009) Characterization of TiO2—Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation—adsorption process. J Hazard Mater 164:138–145

    CAS  Google Scholar 

  • Zhang Y, Ji C (2010) Electro-induced covalent cross-linking of chitosan and formation of chitosan hydrogel films: its application as an enzyme immobilization matrix for use in a phenol sensor. Anal Chem 82:5275–5281

    CAS  Google Scholar 

  • Zhang L, Li Q, Huang D, Li Y, Hou X, Deng X (2011) Soil remediation using chitosan composite material. Chinese patent No. 101705099. Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences; Sichuan University

    Google Scholar 

  • Zhao Y, Park RD, Muzzarelli R (2010) Chitin deacetylases: properties and applications. Mar Drugs 8:24–46

    CAS  Google Scholar 

  • Zhou QX, Song YF (2004) Remediation of contaminated soils: principles and methods. Science, Beijing, pp 1–489

    Google Scholar 

Download references

Acknowledgements

Soon Kong Yong would like to thank the University of South Australia for the UniSA President Scholarship award and Universiti Teknologi MARA for the UiTM Staff Scholarship award. Manoj Shrivastava acknowledges the Australian Government’s Endeavour Research Fellowship award for conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Kong Yong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yong, S.K., Shrivastava, M., Srivastava, P., Kunhikrishnan, A., Bolan, N. (2015). Environmental Applications of Chitosan and Its Derivatives. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 233. Reviews of Environmental Contamination and Toxicology, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-319-10479-9_1

Download citation

Publish with us

Policies and ethics