International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2014: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 pp 724-732 | Cite as

Brain Connectivity Hyper-Network for MCI Classification

  • Biao Jie
  • Dinggang Shen
  • Daoqiang Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

Brain connectivity network has been used for diagnosis and classification of neurodegenerative diseases, such as Alzheimer’s disease (AD) as well as its early stage, i.e., mild cognitive impairment (MCI). However, conventional connectivity network is usually constructed based on the pairwise correlation among brain regions and thus ignores the higher-order relationship among them. Such information loss is unexpected because the brain itself is a complex network and the higher-order interaction may contain useful information for classification. Accordingly, in this paper, we propose a new brain connectivity hyper-network based method for MCI classification. Here, the connectivity hyper-network denotes a network where an edge can connect more than two brain regions, which can be naturally represented with a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI time series using sparse representation modeling. Then, we extract three sets of the brain-region specific features from the connectivity hyper-networks, and exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results demonstrate the efficacy of our proposed method for MCI classification with comparison to the conventional connectivity network based methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the global burden of Alzheimer’s disease. Alzheimers & Dementia 3, 186–191 (2007)CrossRefGoogle Scholar
  2. 2.
    Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., Ritchie, K., Rossor, M., Thal, L., Winblad, B.: Current concepts in mild cognitive impairment. Arch. Neurol-Chicago 58, 1985–1992 (2001)CrossRefGoogle Scholar
  3. 3.
    Jie, B., Zhang, D., Gao, W., Wang, Q., Wee, C.Y., Shen, D.: Integration of Network Topological and Connectivity Properties for Neuroimaging Classification. IEEE Trans. Biomed. Eng. 61, 576–589 (2014)CrossRefGoogle Scholar
  4. 4.
    Wee, C.-Y., Li, Y., Jie, B., Peng, Z.-W., Shen, D.: Identification of MCI Using Optimal Sparse MAR Modeled Effective Connectivity Networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 319–327. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., Chen, K., Reiman, E.: Learning brain connectivity of Alzheimer’s disease by sparse inverse covariance estimation. Neuroimage 50, 935–949 (2010)CrossRefGoogle Scholar
  6. 6.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. Ieee T. Pattern Anal. 31, 210–227 (2009)CrossRefGoogle Scholar
  7. 7.
    Jie, B., Zhang, D., Cheng, B., Shen, D.: Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer’s disease. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 275–283. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55, 856–867 (2011)CrossRefGoogle Scholar
  9. 9.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)CrossRefGoogle Scholar
  10. 10.
    Zhou, D., Huang, J., Schölkopf, B.: Learning with Hypergraphs: Clustering, Classification, and Embedding. The Neural Information Processing Systems, pp. 1601–1608. MIT Press (2006)Google Scholar
  11. 11.
    Gallagher, S.R., Goldberg, D.S.: Clustering Coefficients in Protein Interaction Hypernetworks. In: Gao, J. (ed.) ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics, pp. 552–560 (2013)Google Scholar
  12. 12.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069 (2010)CrossRefGoogle Scholar
  13. 13.
    Davatzikos, C., Bhatt, P., Shaw, L.M., Batmanghelich, K.N., Trojanowski, J.Q.: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol. Aging 32, 2322, e2319–2327 (2011)Google Scholar
  14. 14.
    Van Hoesen, G.W., Augustinack, J.C., Dierking, J., Redman, S.J., Thangavel, R.: The parahippocampal gyrus in Alzheimer’s disease. Clinical and preclinical neuroanatomical correlates. Ann. N Y Acad. Sci. 911, 254–274 (2000)CrossRefGoogle Scholar
  15. 15.
    Baldacara, L., Borgio, J.G., Moraes, W.A., Lacerda, A.L., Montano, M.B., Tufik, S., Bressan, R.A., Ramos, L.R., Jackowski, A.P.: Cerebellar volume in patients with dementia. Rev. Bras. Psiquiatr. 33, 122–129 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Biao Jie
    • 1
    • 2
  • Dinggang Shen
    • 3
  • Daoqiang Zhang
    • 1
  1. 1.Dept. of Computer Science and EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Dept. of Computer Science and TechnologyAnhui Normal UniversityWuhuChina
  3. 3.Dept. of Radiology and BRICUniversity of North CarolinaChapel HillUSA

Personalised recommendations