International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2014: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 pp 505-512 | Cite as

Extracting Vascular Networks under Physiological Constraints via Integer Programming

  • Markus Rempfler
  • Matthias Schneider
  • Giovanna D. Ielacqua
  • Xianghui Xiao
  • Stuart R. Stock
  • Jan Klohs
  • Gábor Székely
  • Bjoern Andres
  • Bjoern H. Menze
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

We introduce an integer programming-based approach to vessel network extraction that enforces global physiological constraints on the vessel structure and learn this prior from a high-resolution reference network. The method accounts for both image evidence and geometric relationships between vessels by formulating and solving an integer programming problem. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating bifurcation angle and connectivity of the graph. We utilize a high-resolution micro computed tomography (μCT) dataset of a cerebrovascular corrosion cast to obtain a reference network, perform experiments on micro magnetic resonance angiography(μMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klohs, J., et al.: Contrast-enhanced magnetic resonance microangiography reveals remodeling of the cerebral microvasculature in transgenic arcaβ mice. J. Neurosc. 32, 1705–1713 (2012)CrossRefGoogle Scholar
  2. 2.
    Hunter, J.M., et al.: Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer’s disease. PLoS ONE 7, e36893 (2012)CrossRefGoogle Scholar
  3. 3.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Aylward, S., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE TMI 21, 61–75 (2002)Google Scholar
  5. 5.
    Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36, 81–121 (2004)CrossRefGoogle Scholar
  6. 6.
    Lesage, D., et al.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis 13, 819–845 (2009)CrossRefGoogle Scholar
  7. 7.
    Jiang, Y., et al.: Vascular tree reconstruction by minimizing a physiological functional cost. In: Proc. CVPR Workshops, pp. 178–185 (2010)Google Scholar
  8. 8.
    Schneider, M., Hirsch, S., Székely, G., Weber, B., Menze, B.H.: Oblique random forests for 3-D vessel detection using steerable filters and orthogonal subspace filtering. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 142–154. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Pudney, C.: Distance-ordered homotopic thinning: A skeletonization algorithm for 3D digital images. CVIU 72, 404–413 (1998)Google Scholar
  10. 10.
    Lee, T., et al.: Building skeleton models via 3-D medial surface axis thinning algorithms. Graphical Models and Image Processing 56, 462–478 (1994)CrossRefGoogle Scholar
  11. 11.
    Lu, L., et al.: Hierarchical learning for tubular structure parsing in medical imaging: A study on coronary arteries using 3D CT angiography. In: Proc. ICCV, pp. 2021–2028 (2009)Google Scholar
  12. 12.
    Kaufhold, J.P., et al.: Vectorization of optically sectioned brain microvasculature: Learning aids completion of vascular graphs by connecting gaps and deleting open-ended segments. Medical Image Analysis 16, 1241–1258 (2012)CrossRefGoogle Scholar
  13. 13.
    Schneider, M., Hirsch, S., Weber, B., Székely, G., Menze, B.H.: TGIF: Topological gap in-fill for vascular networks – A generative physiological modeling approach. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 89–96. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Jiang, Y., Zhuang, Z.W., Sinusas, A.J., Staib, L.H., Papademetris, X.: Vessel connectivity using murray’s hypothesis. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 528–536. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Türetken, E., et al.: Reconstructing loopy curvilinear structures using integer programming. In: Proc. CVPR, pp. 1822–1829 (2013)Google Scholar
  16. 16.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Markus Rempfler
    • 1
  • Matthias Schneider
    • 1
  • Giovanna D. Ielacqua
    • 2
  • Xianghui Xiao
    • 3
  • Stuart R. Stock
    • 4
  • Jan Klohs
    • 2
  • Gábor Székely
    • 1
  • Bjoern Andres
    • 5
  • Bjoern H. Menze
    • 1
    • 6
  1. 1.Computer Vision LaboratoryETH ZürichSwitzerland
  2. 2.Institute for Biomedical EngineeringUniversity and ETH ZürichSwitzerland
  3. 3.Advanced Photon SourceArgonne National LaboratoryUSA
  4. 4.Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  5. 5.Max Planck Institute for InformaticsSaarbrückenGermany
  6. 6.Institute for Advanced Study and Department of Computer ScienceTU MünchenGermany

Personalised recommendations