International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2014: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 pp 405-412 | Cite as

Transport on Riemannian Manifold for Functional Connectivity-Based Classification

  • Bernard Ng
  • Martin Dressler
  • Gaël Varoquaux
  • Jean Baptiste Poline
  • Michael Greicius
  • Bertrand Thirion
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

We present a Riemannian approach for classifying fMRI connectivity patterns before and after intervention in longitudinal studies. A fundamental difficulty with using connectivity as features is that covariance matrices live on the positive semi-definite cone, which renders their elements inter-related. The implicit independent feature assumption in most classifier learning algorithms is thus violated. In this paper, we propose a matrix whitening transport for projecting the covariance estimates onto a common tangent space to reduce the statistical dependencies between their elements. We show on real data that our approach provides significantly higher classification accuracy than directly using Pearson’s correlation. We further propose a non-parametric scheme for identifying significantly discriminative connections from classifier weights. Using this scheme, a number of neuroanatomically meaningful connections are found, whereas no significant connections are detected with pure permutation testing.

Keywords

Classification Connectivity fMRI Riemannian manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castellanos, F.X., Di Martino, A., Craddock, R.C., Mehta, A.D., Milham, M.P.: Clinical Applications of the Functional Connectome. NeuroImage 28, 527–540 (2013)CrossRefMATHGoogle Scholar
  2. 2.
    Varoquaux, G., Baronnet, F., Kleinschmidt, A., Fillard, P., Thirion, B.: Detection of Brain Functional-Connectivity Difference in Post-stroke Patients Using Group-Level Covariance Modeling. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 200–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Pennec, X., Fillard, P., Ayache, N.: A Riemannian Framework for Tensor Computing. Int. J. Comp. Vision 66, 41–66 (2006)CrossRefGoogle Scholar
  4. 4.
    Tolosi, L., Lengauer, T.: Classification with Correlated Features: Unreliability of Feature Ranking and Solutions. Bioinformatics 27, 1986–1994 (2011)CrossRefGoogle Scholar
  5. 5.
    Hauberg, S., Lauze, F., Pedersen, K.S.: Unscented Kalman Filtering on Riemannian Manifolds. J. Math. Imaging & Vision 46, 103–120 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lorenzi, M., Ayache, N., Pennec, X.: Schild’s Ladder for the Parallel Transport of Deformations in Time Series of Images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 463–474. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Wiesel, A., Eldar, Y.C., Hero, A.O.: Shrinkage Algorithms for MMSE Covariance Estimation. IEEE Trans. Sig. Proc. 58, 5016–5029 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and Simple Calculus on Tensors in the Log-Euclidean Framework. In: Duncan, J., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 115–122. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Nichols, T., Hayasaka, S.: Controlling the Familywise Error Rate in Functional Neuroimaging: a Comparative Review. Stat. Methods Med. Research 12, 419–446 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A Component based Noise Correction Method (CompCor) for BOLD and Perfusion based fMRI. NeuroImage 37, 90–101 (2007)CrossRefGoogle Scholar
  11. 11.
    Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D.: Decoding Subject-driven Cognitive States with Whole-brain Connectivity Patterns. Cereb. Cortex 22, 158–165 (2012)CrossRefGoogle Scholar
  12. 12.
    Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional Connectivity in the Resting Brain: A Network Analysis of the Default Mode Hypothesis. Proc. Natl. Acad. Sci. 100, 253–258 (2003)CrossRefGoogle Scholar
  13. 13.
    Kim, H.: Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. NeuroImage 50, 1648–1657 (2010)CrossRefGoogle Scholar
  14. 14.
    Sandrini, M., Cappa, S.F., Rossi, S., Rossini, P.M., Miniussi, C.: The Role of Prefrontal Cortex in Verbal Episodic Memory: rTMS Evidence. J. Cog. Neurosci. 15, 855–861 (2003)CrossRefGoogle Scholar
  15. 15.
    Squire, L.R.: The neuropsychology of memory. Springer (1984)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bernard Ng
    • 1
    • 2
  • Martin Dressler
    • 3
  • Gaël Varoquaux
    • 1
  • Jean Baptiste Poline
    • 1
  • Michael Greicius
    • 2
  • Bertrand Thirion
    • 1
  1. 1.Parietal team, NeurospinINRIA SaclayFrance
  2. 2.FIND LabStanford UniversityUSA
  3. 3.Cognition and BehaviourDonders Institute for BrainNijmegenThe Netherlands

Personalised recommendations