International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2014: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 pp 268-275 | Cite as

Multi-modal Measurement of the Myelin-to-Axon Diameter g-ratio in Preterm-born Neonates and Adult Controls

  • Andrew Melbourne
  • Zach Eaton-Rosen
  • Enrico De Vita
  • Alan Bainbridge
  • Manuel Jorge Cardoso
  • David Price
  • Ernest Cady
  • Giles S. Kendall
  • Nicola J. Robertson
  • Neil Marlow
  • Sébastien Ourselin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

Infants born prematurely are at increased risk of adverse functional outcome. The measurement of white matter tissue composition and structure can help predict functional performance and this motivates the search for new multi-modal imaging biomarkers. In this work we develop a novel combined biomarker from diffusion MRI and multi-component T2 relaxation measurements in a group of infants born very preterm and scanned between 30 and 40 weeks equivalent gestational age. We also investigate this biomarker on a group of seven adult controls, using a multi-modal joint model-fitting strategy. The proposed emergent biomarker is tentatively related to axonal energetic efficiency (in terms of axonal membrane charge storage) and conduction velocity and is thus linked to the tissue electrical properties, giving it a good theoretical justification as a predictive measurement of functional outcome.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brody, B.A., Kinney, H.C., Kloman, A.S., Gilles, F.H.: Sequence of central nervous system myelination in human infancy. i. an autopsy study of myelination. J. Neuropathol. Exp. Neurol. 46(3), 283–301 (1987)CrossRefGoogle Scholar
  2. 2.
    Costeloe, K.L., Hennessy, E.M., Haider, S., Stacey, F., Marlow, N., Draper, E.S.: Short term outcomes after extreme preterm birth in england: comparison of two birth cohorts in 1995 and 2006 (the epicure studies). BMJ 345, e7976 (2012)Google Scholar
  3. 3.
    Stikov, N., Perry, L.M., Mezer, A., Rykhlevskaia, E., Wandell, B.A., Pauly, J.M., Dougherty, R.F.: Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure. Neuroimage 54(2), 1112–1121 (2011)CrossRefGoogle Scholar
  4. 4.
    Prasloski, T., Maedler, B., Xiang, Q.S., MacKay, A., Jones, C.: Applications of stimulated echo correction to multicomponent t2 analysis. Magn. Reson. Med. 67(6), 1803–1814 (2012)CrossRefMATHGoogle Scholar
  5. 5.
    Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J.M., Dyrby, T.B.: Orientationally invariant indices of axon diameter and density from diffusion mri. Neuroimage 52(4), 1374–1389 (2010)CrossRefGoogle Scholar
  6. 6.
    Chomiak, T., Hu, B.: What is the optimal value of the g-ratio for myelinated fibers in the rat cns? a theoretical approach. PLoS One 4(11), e7754 (2009)Google Scholar
  7. 7.
    Moffett, J.R., Ross, B., Arun, P., Madhavarao, C.N., Namboodiri, A.M.A.: N-acetylaspartate in the cns: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81(2), 89–131 (2007)CrossRefGoogle Scholar
  8. 8.
    Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: Noddi: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)CrossRefGoogle Scholar
  9. 9.
    Matsumoto, G., Tasaki, I.: A study of conduction velocity in nonmyelinated nerve fibres. Biophysical Journal 20, 13 (1977)CrossRefGoogle Scholar
  10. 10.
    Rushton, W.A.H.: A theory of the effects of fibre size in medullated nerve. J. Physiol. 115(1), 101–122 (1951)CrossRefGoogle Scholar
  11. 11.
    Soo, Y.W., Bates, D.M.: Loosely coupled nonlinear least squares. Computational Statistics & Data Analysis 14, 249–259 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrew Melbourne
    • 1
  • Zach Eaton-Rosen
    • 1
  • Enrico De Vita
    • 3
  • Alan Bainbridge
    • 4
  • Manuel Jorge Cardoso
    • 1
  • David Price
    • 4
  • Ernest Cady
    • 4
  • Giles S. Kendall
    • 2
  • Nicola J. Robertson
    • 2
  • Neil Marlow
    • 2
  • Sébastien Ourselin
    • 1
  1. 1.Centre for Medical Image ComputingUniversity College LondonUK
  2. 2.Academic NeonatologyEGA UCL Institute for Women’s HealthLondonUK
  3. 3.Academic Neuroradiological UnitUCL Institute of NeurologyLondonUK
  4. 4.Medical PhysicsUniversity College HospitalLondonUK

Personalised recommendations