Advertisement

Colon Flattening by Landmark-Driven Optimal Quasiconformal Mapping

  • Wei Zeng
  • Yi-Jun Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

In virtual colonoscopy, colon conformal flattening plays an important role, which unfolds the colon wall surface to a rectangle planar image and preserves local shapes by conformal mapping, so that the cancerous polyps and other abnormalities can be easily and thoroughly recognized and visualized without missing hidden areas. In such maps, the anatomical landmarks (taeniae coli, flexures, and haustral folds) are naturally mapped to convoluted curves on 2D domain, which poses difficulty for comparing shapes from geometric feature details. Understanding the nature of landmark curves to the whole surface structure is meaningful but it remains challenging and open. In this work, we present a novel and effective colon flattening method based on quasiconformal mapping, which straightens the main anatomical landmark curves with least conformality (angle) distortion. It provides a canonical and straightforward view of the long, convoluted and folded tubular colon surface. The computation is based on the holomorphic 1-form method with landmark straightening constraints and quasiconformal optimization, and has linear time complexity due to the linearity of 1-forms in each iteration. Experiments on various colon data demonstrate the efficiency and efficacy of our algorithm and its practicability for polyp detection and findings visualization; furthermore, the result reveals the geometric characteristics of anatomical landmarks on colon surfaces.

Keywords

Quasiconformal Mapping Virtual Colonoscopy Polyp Detection Beltrami Coefficient Colon Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Center, M.M., Jemal, A., Smith, R.A., Ward, E.: Worldwide variations in colorectal cancer. CA: A Cancer Journal for Clinicians 59(6), 366–378 (2009)Google Scholar
  2. 2.
    Vining, D., Shifrin, R., Grishaw, E., Liu, K., Choplin, R.: Virtual colonscopy (abstract). Radiology 193(P), 446 (1994)Google Scholar
  3. 3.
    Hong, L., Muraki, S., Kaufman, A., Bartz, D., He, T.: Virtual voyage: Interactive navigation in the human colon. In: Proc. of SIGGRAPH, pp. 27–34 (1997)Google Scholar
  4. 4.
    Hong, W., Qiu, F., Kaufman, A.: A pipeline for computer aided polyp detection. IEEE TVCG 12(5), 861–868 (2006)Google Scholar
  5. 5.
    Haker, S., Angenent, S., Kikinis, R.: Nondistorting flattening maps and the 3d visualization of colon ct images. IEEE TMI 19, 665–670 (2000)Google Scholar
  6. 6.
    Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.: Conformal virtual colon flattening. In: Proc. of ACM Symposium on Solid and Physical Modeling, pp. 85–93 (2006)Google Scholar
  7. 7.
    Qiu, F., Fan, Z., Yin, X., Kaufman, A., Gu, X.: Colon flattening with discrete Ricci flow. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008 Workshop. LNCS, vol. 5242, pp. 97–102. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Marino, J., Zeng, W., Gu, X., Kaufman, A.: Context preserving maps of tubular structures. IEEE TVCG 17(2), 1997–2004 (2011)Google Scholar
  9. 9.
    Ahlfors, L.: Lectures in Quasiconformal Mappings. Van Nostrand Reinhold, New York (1966)Google Scholar
  10. 10.
    Gu, X., Yau, S.T.: Global conformal parameterization. In: Proc. of Symposium on Geometry Processing, pp. 127–137 (2003)Google Scholar
  11. 11.
    Zeng, W., Marino, J., Gurijala, K., Gu, X., Kaufman, A.: Supine and prone colon registration using quasi-conformal mapping. IEEE TVCG 16(6), 1348–1357 (2010)Google Scholar
  12. 12.
    Farkas, H.M., Kra, I.: Riemann Surfaces. Springer, New York (1980)CrossRefGoogle Scholar
  13. 13.
    Guggenheimer, H.W.: Differential Geometry. Dover Publications (1977)Google Scholar
  14. 14.
    Lui, L.M., Gu, X., Yau, S.T.: Convergence of an iterative algorithm for teichmüller maps via harmonic energy optimization. Technical report (2013), ftp://ftp.math.ucla.edu/pub/camreport/cam13-36.pdf
  15. 15.
    Zeng, W., Luo, F., Yau, S.-T., Gu, X.D.: Surface quasi-conformal mapping by solving Beltrami equations. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) Mathematics of Surfaces XIII. LNCS, vol. 5654, pp. 391–408. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Gibson, S.F.F.: Constrained elastic surface nets: Generating smooth surfaces from binary segmented data. In: Wells, W.M., Colchester, A.C.F., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 888–898. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wei Zeng
    • 1
  • Yi-Jun Yang
    • 2
  1. 1.Florida International UniversityMiamiUSA
  2. 2.Shandong UniversityJinanChina

Personalised recommendations