Advertisement

Registering Cortical Surfaces Based on Whole-Brain Structural Connectivity and Continuous Connectivity Analysis

  • Boris Gutman
  • Cassandra Leonardo
  • Neda Jahanshad
  • Derrek Hibar
  • Kristian Eschenburg
  • Talia Nir
  • Julio Villalon
  • Paul Thompson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8675)

Abstract

We present a framework for registering cortical surfaces based on tractography-informed structural connectivity. We define connectivity as a continuous kernel on the product space of the cortex, and develop a method for estimating this kernel from tractography fiber models. Next, we formulate the kernel registration problem, and present a means to non-linearly register two brains’ continuous connectivity profiles. We apply theoretical results from operator theory to develop an algorithm for decomposing the connectome into its shared and individual components. Lastly, we extend two discrete connectivity measures to the continuous case, and apply our framework to 98 Alzheimer’s patients and controls. Our measures show significant differences between the two groups.

Keywords

Diffusion MRI Cortical Surface Registration Connectivity Analysis Data Fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duarte-Carvajalino, J.M., Jahanshad, N., Lenglet, C., McMahon, K.L., de Zubicaray, G.I., Martin, N.G., Wright, M.J., Thompson, P.M., Sapiro, G.: Hierarchical topological network analysis of anatomical human brain connectivity and differences related to sex and kinship. Neuroimage 59, 3784–3804 (2012)CrossRefGoogle Scholar
  2. 2.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069 (2010)CrossRefGoogle Scholar
  3. 3.
    Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., Chen, H., Deng, F., Faraco, C., Jin, C., Wee, C.Y., Yuan, Y., Lv, P., Yin, Y., Hu, X., Duan, L., Han, J., Wang, L., Shen, D., Miller, L.S., Li, L., Liu, T.: DICCCOL: dense individualized and common connectivity-based cortical landmarks. Cereb Cortex 23, 786–800 (2013)CrossRefGoogle Scholar
  4. 4.
    Lecoeur, J., Ingalhalikar, M., Verma, R.: Reproducibility of connectivity based parcellation: primary visual cortex. Proc. Int. Soc. Magn. Reson. Med. Sci. Meet. Exhib. Int. 2089 (2013)Google Scholar
  5. 5.
    Siless, V., Glaunès, J., Guevara, P., Mangin, J.-F., Poupon, C., Le Bihan, D., Thirion, B., Fillard, P.: Joint T1 and brain fiber log-demons registration using currents to model geometry. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 57–65. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Petrović, A., Smith, S., Menke, R., Jenkinson, M.: Methods for Tractography-Driven Surface Registration of Brain Structures. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 705–712. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Gutman, B.A., Madsen, S.K., Toga, A.W., Thompson, P.M.: A Family of Fast Spherical Registration Algorithms for Cortical Shapes. Multimodal Brain Image Analysis (MBIA 2013) (2013)Google Scholar
  8. 8.
    Chung, M.K., Hartley, R., Dalton, K.M., Davidson, R.J.: Encoding Cortical Surface by Spherical Harmonics. Stat. Sinica 18, 1269–1291 (2008)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Rubenstein, J.L., Merzenich, M.M.: Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes. Brain Behav. 2, 255–267 (2003)CrossRefGoogle Scholar
  10. 10.
    Kreyszig, E.: Introductory functional analysis with applications. Krieger Pub. Co., Malabar (1989)zbMATHGoogle Scholar
  11. 11.
    Aganj, I., Lenglet, C., Jahanshad, N., Yacoub, E., Harel, N., Thompson, P.M., Sapiro, G.: A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography. Medical Image Analysis 15, 414–425 (2011)CrossRefGoogle Scholar
  12. 12.
    Beattie, C.: Galerkin Eigenvector Approximations. Math. Comput. 69, 1409–1434 (2000)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Boris Gutman
    • 1
  • Cassandra Leonardo
    • 1
  • Neda Jahanshad
    • 1
  • Derrek Hibar
    • 1
  • Kristian Eschenburg
    • 1
  • Talia Nir
    • 1
  • Julio Villalon
    • 1
  • Paul Thompson
    • 1
  1. 1.Imaging Genetics Center, INIUniversity of Southern CaliforniaUSA

Personalised recommendations