Advertisement

Augmented Reality-Enhanced Endoscopic Images for Annuloplasty Ring Sizing

  • Sandy Engelhardt
  • Raffaele De Simone
  • Norbert Zimmermann
  • Sameer Al-Maisary
  • Diana Nabers
  • Matthias Karck
  • Hans-Peter Meinzer
  • Ivo Wolf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8678)

Abstract

Mitral valve annuloplasty is done in patients with mitral valve insufficiency in order to stabilize, remodel or downsize the often symmetrical or asymmetrical dilated annulus by stitching a prosthetic ring on this anatomical structure. Prosthetic rings are available in different shapes and sizes. State-of-the-art intraoperative sizing techniques for determination of the appropriate ring prosthesis are ambiguous and highly depend on the surgeon’s expertise. We propose a new augmented reality environment for visualizing the prosthetic ring in-situ on endoscopic images and therefore aid in ring selection. The superimposed ring gives quantitative information and visual cues allowing to compare the selected ring prosthesis with the patient’s annulus. Furthermore, it helps in determination of regions where an asymmetrical dilatation can be observed. Our method identifies 2D points on the endoscopic images by detecting the entry points of the mattress sutures into the annular tissue for ring fixation. 3D shape information of the annulus are obtained from ultrasound images of the patient. The pose estimation problem of the 3D annulus model is solved using an adapted iterative closest point algorithm. Neither additional hardware nor placement of artificial fiducial markers are required by the proposed approach.

Keywords

Augmented Reality Endoscopy Surgical Suture Detection Mitral Valve Annuloplasty Minimal-Invasive Valve Reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bothe, W., Miller, D.C., Doenst, T.: Sizing for mitral annuloplasty: Where does science stop and voodoo begin? Ann. Thorac. Surg. 95(4), 1475–1483 (2013)CrossRefGoogle Scholar
  2. 2.
    Carpentier, A.: Cardiac valve surgery–the “French correction”. J. Thorac. Cardiovasc. Surg. 86(3), 323–337 (1983)Google Scholar
  3. 3.
    Carpentier, A., Adams, D.H., Filsoufi, F.: Carpentier’s Reconstructive Valve Surgery. Elsevier Health Sciences (2010)Google Scholar
  4. 4.
    Graser, B., Seitel, M., Al-Maisary, S., Grossgasteiger, M., et al.: Computer-assisted analysis of annuloplasty rings. In: Bildverarbeitung für die Medizin 2013, pp. 75–80. Springer (2013)Google Scholar
  5. 5.
    Graser, B., Wald, D., Al-Maisary, S., Grossgasteiger, M., et al.: Using a shape prior for robust modeling of the mitral annulus on 4D ultrasound data. Int. J. Comput. Assist. Radiol. Surg., 1–10 (2013)Google Scholar
  6. 6.
    Horn, B.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A 4(4), 629–642 (1987)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Maisano, F., Skantharaja, R., Denti, P., et al.: Mitral annuloplasty. Multimedia Manual of Cardio-Thoracic Surgery, 2009(0918):mmcts.2008.003640 (2009)Google Scholar
  8. 8.
    Maurer, C., Qi, R., Raghavan, V.: A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)CrossRefGoogle Scholar
  9. 9.
    Nolden, M., Zelzer, S., Seitel, A., Wald, D., et al.: The Medical Imaging Interaction Toolkit: challenges and advances: 10 years of open-source development. Int. J. Comput. Assist. Radiol. Surg. 8(4), 607–620 (2013)CrossRefGoogle Scholar
  10. 10.
    Rosenhahn, B., Krüger, N., Rabsch, T., Sommer, G.: Tracking with a novel pose estimation algorithm. In: Klette, R., Peleg, S., Sommer, G. (eds.) RobVis 2001. LNCS, vol. 1998, pp. 9–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Sato, Y., Nakajima, S., Atsumi, H., Koller, T., et al.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997. LNCS, vol. 1205, pp. 213–222. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Shi, J., Tomasi, C.: Good features to track. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)Google Scholar
  13. 13.
    Sommer, C., Straehle, C., Kothe, U., Hamprecht, F.A.: Ilastik: Interactive learning and segmentation toolkit. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 230–233 (2011)Google Scholar
  14. 14.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sandy Engelhardt
    • 1
  • Raffaele De Simone
    • 2
  • Norbert Zimmermann
    • 2
  • Sameer Al-Maisary
    • 2
  • Diana Nabers
    • 1
  • Matthias Karck
    • 2
  • Hans-Peter Meinzer
    • 1
  • Ivo Wolf
    • 1
    • 3
  1. 1.Div. of Medical and Biological InformaticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Department of Cardiac SurgeryUniversity of HeidelbergHeidelbergGermany
  3. 3.Institute for Medical InformaticsMannheim University of Applied SciencesMannheimGermany

Personalised recommendations