Reformulation Based MaxSAT Robustness

(Extended Abstract)
  • Miquel Bofill
  • Dídac Busquets
  • Mateu Villaret
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8656)

Abstract

The presence of uncertainty in the real world makes robustness a desirable property of solutions to Constraint Satisfaction Problems (CSP). A solution is said to be robust if it can be easily repaired when unexpected events happen. This has already been addressed in the frameworks of Boolean satisfiability (SAT) and Constraint Programming (CP). In this paper we consider the unaddressed problem of robustness in weighted MaxSAT, by showing how robust solutions to weighted MaxSAT instances can be effectively obtained via reformulation into pseudo-Boolean formulae. Our encoding provides a reasonable balance between increase in size and performance. We also consider flexible robustness for problems having some unrepairable breakage, in other words, problems for which there does not exist a robust solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argelich, J., Cabiscol, A., Lynce, I., Manyà, F.: Modelling Max-CSP as Partial Max-SAT. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 1–14. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bertsimas, D., Sim, M.: The Price of Robustness. Operations Research 52(1), 35–53 (2004)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bofill, M., Busquets, D., Muñoz, V., Villaret, M.: Reformulation based MaxSAT robustness. Constraints 18(2), 202–235 (2013)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ginsberg, M.L., Parkes, A.J., Roy, A.: Supermodels and robustness. In: 15th National Conference on Artificial Intelligence and 10th Innovative Applications of Artificial Intelligence Conference, AAAI/IAAI 1998, pp. 334–339. AAAI Press / The MIT Press (1998)Google Scholar
  5. 5.
    Hebrard, E.: Robust Solutions for Constraint Satisfaction and Optimisation under Uncertainty. PhD thesis, University of New South Wales (2006)Google Scholar
  6. 6.
    Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding Diverse and Similar Solutions in Constraint Programming. In: 20th National Conference on Artificial Intelligence and 17th Innovative Applications of Artificial Intelligence Conference, AAAI/IAAI 2005, pp. 372–377. AAAI Press / The MIT Press (2005)Google Scholar
  7. 7.
    Hebrard, E., Hnich, B., Walsh, T.: Robust Solutions for Constraint Satisfaction and Optimization. In: 16th Eureopean Conference on Artificial Intelligence, ECAI 2004, pp. 186–190. IOS Press (2004)Google Scholar
  8. 8.
    Hebrard, E., Hnich, B., Walsh, T.: Super Solutions in Constraint Programming. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 157–172. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Hebrard, E., Hnich, B., Walsh, T.: Improved Algorithm for Finding (a,b)-Super Solutions. In: Workshop on Constraint Programming for Planning and Scheduling, pp. 236–248 (2005)Google Scholar
  10. 10.
    Holland, A., O’Sullivan, B.: Weighted Super Solutions for Constraint Programs. In: 20th National Conference on Artificial Intelligence and 17th Innovative Applications of Artificial Intelligence Conference, AAAI/IAAI 2005, pp. 378–383. AAAI Press / The MIT Press (2005)Google Scholar
  11. 11.
    Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Handbook of Satisfiability, pp. 613–631. IOS Press (2009)Google Scholar
  12. 12.
    Roussel, O., Manquinho, V.: Pseudo-Boolean and Cardinality Constraints. In: Handbook of Satisfiability, pp. 695–734. IOS Press (2009)Google Scholar
  13. 13.
    Roy, A.: Fault Tolerant Boolean Satisfiability. Journal of Artificial Intelligence Research 25, 503–527 (2006)MATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Miquel Bofill
    • 1
  • Dídac Busquets
    • 2
  • Mateu Villaret
    • 1
  1. 1.Departament d’Informàtica, Matemàtica Aplicada i EstadísticaUniversitat de GironaSpain
  2. 2.Department of Electrical and Electronic EngineeringImperial College LondonUK

Personalised recommendations