Optimization Bounds from Binary Decision Diagrams

(Extended Abstract)
  • David Bergman
  • Andre A. Ciré
  • Willem-Jan van Hoeve
  • John N. Hooker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8656)


Bounds on the optimal value are often indispensable for the practical solution of discrete optimization problems, particularly in the branching procedures used by constraint programming (CP) and integer programming solvers. Such bounds are frequently obtained by solving a continuous relaxation of the problem, perhaps a linear programming (LP) relaxation. In this paper, we explore an alternative strategy of obtaining bounds from a discrete relaxation, namely a binary decision diagram (BDD). Such a strategy is particularly suitable for CP, because BDDs provide enhanced propagation as well [2-5].


Boolean Function Constraint Programming Linear Programming Relaxation Discrete Optimization Problem Binary Decision Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for the application of BDDs to the maximum independent set problem. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Hoda, S., van Hoeve, W.J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27, 509–516 (1978)Google Scholar
  7. 7.
    Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Systems Technical Journal 38, 985–999 (1959)CrossRefGoogle Scholar
  8. 8.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers C-35, 677–691 (1986)Google Scholar
  9. 9.
    Hu, A.J.: Techniques for efficient formal verification using binary decision diagrams. Thesis CS-TR-95-1561, Stanford University, Department of Computer Science (December 1995)Google Scholar
  10. 10.
    Loekito, E., Bailey, J., Pei, J.: A binary decision diagram based approach for mining frequent subsequences. Knowl. Inf. Syst. 24(2), 235–268 (2010)CrossRefGoogle Scholar
  11. 11.
    Wegener, I.: Branching programs and binary decision diagrams: theory and applications. SIAM monographs on discrete mathematics and applications. Society for Industrial and Applied Mathematics (2000)Google Scholar
  12. 12.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, vol. 2. Springer (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David Bergman
    • 1
  • Andre A. Ciré
    • 2
  • Willem-Jan van Hoeve
    • 2
  • John N. Hooker
    • 2
  1. 1.University of ConnecticutUSA
  2. 2.Carnegie Mellon UniversityUSA

Personalised recommendations