Domain Views for Constraint Programming

  • Pascal Van Hentenryck
  • Laurent Michel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8656)

Abstract

Traditional constraint-programming systems provide the concept of variable views which implement a view of the type y = f(x) by delegating operations on variable y to variable x. While the traditional support is limited to bound consistency, this paper offers views that support domain consistency without any limitations. This paper proposes the alternative concept of domain views which delegate all domain operations. Domain views preserve the benefits of variable views, simplify the implementation of value-based propagation, and also support non-injective views compositionally. Experimental results demonstrate the practical benefits of domain views. The paper also reveals a subtle interaction between views and the exploitation of constraint idempotence, which may lead to incomplete propagation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barendregt, H.P.: The Lambda Calculus – Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics, vol. 103. North-Holland (1984)Google Scholar
  2. 2.
    Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In: Glaser, H., Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Dynadec, I.: Comet v2.1 user manual. Technical report, Providence, RI (2009)Google Scholar
  4. 4.
    Hentenryck, P.V., Saraswat, V., Deville, Y.: Constraint processing in cc(fd). Technical report (1992)Google Scholar
  5. 5.
    Ilog Solver 4.4. Reference Manual. Ilog SA, Gentilly, France (1998)Google Scholar
  6. 6.
    Lagerkvist, M.Z., Schulte, C.: Advisors for incremental propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 409–422. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Schulte, C., Tack, G.R.: Perfect derived propagators. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 571–575. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Schulte, C., Tack, G.: View-based propagator derivation. Constraints 18(1), 75–107 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Van Hentenryck, P., Deville, Y., Teng, C.: A Generic Arc Consistency Algorithm and Its Specializations. Artificial Intelligence 57(2-3) (1992)Google Scholar
  10. 10.
    Van Hentenryck, P., Michel, L.: The Objective-CP Optimization System. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 8–29. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pascal Van Hentenryck
    • 1
  • Laurent Michel
    • 2
  1. 1.NICTAAustralia
  2. 2.University of ConnecticutStorrsUSA

Personalised recommendations