Improving Relational Consistency Algorithms Using Dynamic Relation Partitioning

  • Anthony Schneider
  • Robert J. Woodward
  • Berthe Y. Choueiry
  • Christian Bessiere
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8656)

Abstract

Relational consistency algorithms are instrumental for solving difficult instances of Constraint Satisfaction Problems (CSPs), often allowing backtrack-free search. In this paper, we improve an algorithm for enforcing relational consistency by exploiting the property that the constraints of the dual encoding of a CSP are piecewise functional. This property allows us to partition a CSP relation into blocks of equivalent tuples at varying levels of granularity. Our new algorithm dynamically exploits those partitions. Our experiments show a significant improvement of the processing time for enforcing relational consistency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bessiere, C.: Constraint Propagation. In: Handbook of Constraint Programming, Elsevier (2006)Google Scholar
  2. 2.
    Bessiere, C., Cardon, S., Debruyne, R., Lecoutre, C.: Efficient Algorithms for Singleton Arc Consistency. Constraints 16(1), 25–53 (2011)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bessière, C., Stergiou, K., Walsh, T.: Domain Filtering Consistencies for Non-Binary Constraints. Artificial Intelligence 172, 800–822 (2008)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Choueiry, B.Y., Davis, A.M.: Dynamic Bundling: Less Effort for More Solutions. In: Koenig, S., Holte, R. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 64–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Choueiry, B.Y., Noubir, G.: On the Computation of Local Interchangeability in Discrete Constraint Satisfaction Problems. In: AAAI 1998, pp. 326–333 (1998)Google Scholar
  6. 6.
    Dechter, R., van Beek, P.: Local and Global Relational Consistency. Theor. Comput. Sci. 173(1), 283–308 (1997)CrossRefMATHGoogle Scholar
  7. 7.
    Freuder, E.C.: Eliminating Interchangeable Values in Constraint Satisfaction Problems. In: AAAI 1991, pp. 227–233 (1991)Google Scholar
  8. 8.
    Geschwender, D., Karakashian, S., Woodward, R., Choueiry, B.Y., Scott, S.D.: Selecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning Techniques. In: Pre-PhD Student Abstract and Poster Program of AAAI 2013, pp. 1611–1612 (2013)Google Scholar
  9. 9.
    Gottlob, G.: On Minimal Constraint Networks. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 325–339. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Gyssens, M.: On the Complexity of Join Dependencies. ACM Trans. Database Systems 11(1), 81–108 (1986)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Van Hentenryck, P., Deville, Y., Teng, C.-M.: A Generic Arc Consistency Algorithm and its Specializations. Artificial Intelligence 57, 291–321 (1992)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Janssen, P., Jégou, P., Nougier, B., Vilarem, M.-C.: A Filtering Process for General Constraint-Satisfaction Problems: Achieving Pairwise-Consistency Using an Associated Binary Representation. In: IEEE Workshop on Tools for AI, pp. 420–427 (1989)Google Scholar
  13. 13.
    Jeavons, P., Petke, J.: Local Consistency and SAT-Solvers. JAIR 43, 329–351 (2012)MATHMathSciNetGoogle Scholar
  14. 14.
    Karakashian, S.: Practical Tractability of CSPs by Higher Level Consistency and Tree Decomposition. PhD thesis, University of Nebraska-Lincoln (2013)Google Scholar
  15. 15.
    Karakashian, S., Woodward, R., Choueiry, B.Y.: Improving the Performance of Consistency Algorithms by Localizing and Bolstering Propagation in a Tree Decomposition. In: AAAI 2013, pp. 466–473 (2013)Google Scholar
  16. 16.
    Karakashian, S., Woodward, R., Reeson, C., Choueiry, B.Y., Bessiere, C.: A First Practical Algorithm for High Levels of Relational Consistency. In: AAAI 2010, pp. 101–107 (2010)Google Scholar
  17. 17.
    Lal, A., Choueiry, B.Y.: Constraint Processing Techniques for Improving Join Computation: A Proof of Concept. In: Kuijpers, B., Revesz, P.Z. (eds.) CDB 2004. LNCS, vol. 3074, pp. 143–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Lal, A., Choueiry, B.Y., Freuder, E.C.: Neighborhood Interchangeability and Dynamic Bundling for Non-Binary Finite CSPs. In: AAAI 2005, pp. 387–404 (2005)Google Scholar
  19. 19.
    Lecoutre, C., Likitvivatanavong, C., Yap, R.H.C.: A Path-Optimal GAC Algorithm for Table Constraints. In: ECAI 2012, pp. 510–515 (2012)Google Scholar
  20. 20.
    Lecoutre, C., Paparrizou, A., Stergiou, K.: Extending STR to a Higher-Order Consistency. In: AAAI 2013, pp. 576–582 (2013)Google Scholar
  21. 21.
    Paparrizou, A., Stergiou, K.: An Efficient Higher-Order Consistency Algorithm for Table Constraints. In: AAAI 2012 (2012)Google Scholar
  22. 22.
    Samaras, N., Stergiou, K.: Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results. JAIR 24, 641–684 (2005)MATHMathSciNetGoogle Scholar
  23. 23.
    Woodward, R., Karakashian, S., Choueiry, B.Y., Bessiere, C.: Solving Difficult CSPs with Relational Neighborhood Inverse Consistency. In: AAAI 2011, pp. 112–119 (2011)Google Scholar
  24. 24.
    Woodward, R.J., Karakashian, S., Choueiry, B.Y., Bessiere, C.: Revisiting Neighborhood Inverse Consistency on Binary CSPs. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 688–703. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anthony Schneider
    • 1
  • Robert J. Woodward
    • 1
    • 2
  • Berthe Y. Choueiry
    • 1
  • Christian Bessiere
    • 2
  1. 1.Constraint Systems LaboratoryUniversity of Nebraska-LincolnUSA
  2. 2.LIRMMCNRS & University of MontpellierFrance

Personalised recommendations