Constraint-Based Lagrangian Relaxation

  • Daniel Fontaine
  • LaurentMichel
  • Pascal Van Hentenryck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8656)

Abstract

This paper studies how to generalize Lagrangian relaxation to high-level optimization models, including constraint-programming and local search models. It exploits the concepts of constraint violation (typically used in constraint programming and local search) and constraint satisfiability (typically exploited in mathematical programming). The paper considers dual and primal methods, studies their properties, and discusses how they can be implemented in terms of high-level model combinators and algorithmic templates. Experimental results suggest the potential benefits of Lagrangian methods for improving high-level constraint programming and local search models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)MATHGoogle Scholar
  2. 2.
    Beldiceanu, N., Petit, T.: Cost evaluation of soft global constraints. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 80–95. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Choi, K.M.F., Lee, J.H.-M., Stuckey, P.J.: A lagrangian reconstruction of genet. Artif. Intell. 123(1-2), 1–39 (2000)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Codognet, C., Diaz, D.: Yet Another Local Search Method for Constraint Solving. In: AAAI Fall Symposium on Using Uncertainty within Computation, Cape Cod, MA (2001)Google Scholar
  5. 5.
    Fisher, M.: The Lagrangian Relaxation Method for Solving Integer Programming Problems. Management Science 27, 1–18 (1981)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Fontaine, D., Michel, L., Van Hentenryck, P.: Model combinators for hybrid optimization. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 299–314. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm (1996)Google Scholar
  8. 8.
    Luenberger, D.G.: Introduction to Linear and Nonlinear Programming. Addison-Wesley, Reading (1973)MATHGoogle Scholar
  9. 9.
    Nareyek, A.: Using global constraints for local search. In: Freuder, E.C., Wallace, R.J. (eds.) Constraint Programming and Large Scale Discrete Optimization. American Mathematical Society Publications, vol. 57, pp. 9–28. DIMACS (2001)Google Scholar
  10. 10.
    Sellmann, M., Fahle, T.: Constraint programming based lagrangian relaxation for the automatic recording problem. Annals of Operations Research 118(1-4), 17–33 (2003)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society Publications, vol. 26. DIMACS (1996)Google Scholar
  12. 12.
    Shang, Y., Wah, B.: A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems. Journal of Global Optimization 12, 61–99 (1998)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Sun, T., Zhao, Q.C., Luh, P.B.: On the Surrogate Gradient Algorithm for Lagrangian Relaxation. Journal of Optimization Theory and Applications 133(3), 413–416 (2007)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Van Hentenryck, P.: Constraint-Based Local Search. The MIT Press, Cambridge (2005)Google Scholar
  15. 15.
    Van Hentenryck, P., Michel, L.: The Objective-CP Optimization System. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 8–29. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Voudouris, C., Tsang, E.: Partial constraint satisfaction problems and guided local search. In: Proc., Practical Application of Constraint Technology (PACT 1996), pp. 337–356 (1996)Google Scholar
  17. 17.
    Wah, B.W., Wu, Z.: The theory of discrete lagrange multipliers for nonlinear discrete optimization. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 28–42. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Zhao, X., Luh, P.B., Wang, J.: The surrogate gradient algorithm for Lagrangian relaxation method. In: Proceedings of the 36th IEEE Conference on Decision and Control, pp. 305–310 (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel Fontaine
    • 1
  • LaurentMichel
    • 1
  • Pascal Van Hentenryck
    • 2
  1. 1.University of ConnecticutStorrsUSA
  2. 2.NICTA and Australian National UniversityAustralia

Personalised recommendations