Improving DPOP with Branch Consistency for Solving Distributed Constraint Optimization Problems

  • Ferdinando Fioretto
  • Tiep Le
  • William Yeoh
  • Enrico Pontelli
  • Tran Cao Son
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8656)


The DCOP model has gained momentum in recent years thanks to its ability to capture problems that are naturally distributed and cannot be realistically addressed in a centralized manner. Dynamic programming based techniques have been recognized to be among the most effective techniques for building complete DCOP solvers (e.g., DPOP). Unfortunately, they also suffer from a widely recognized drawback: their messages are exponential in size. Another limitation is that most current DCOP algorithms do not actively exploit hard constraints, which are common in many real problems. This paper addresses these two limitations by introducing an algorithm, called BrC-DPOP, that exploits arc consistency and a form of consistency that applies to paths in pseudo-trees to reduce the size of the messages. Experimental results shows that BrC-DPOP uses messages that are up to one order of magnitude smaller than DPOP, and that it can scale up well, being able to solve problems that its counterpart can not.


Propagation Phase Unary Constraint Soft Constraint Hard Constraint Message Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bessiere, C., Gutierrez, P., Meseguer, P.: Including Soft Global Constraints in DCOPs. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 175–190. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Bessiere, C., Regin, J.: Refining the Basic Constraint Propagation Algorithm. In: Proc. of IJCAI, pp. 309–315 (2001)Google Scholar
  3. 3.
    Brito, I., Meseguer, P.: Improving DPOP with function filtering. In: Proc. of AAMAS, pp. 141–158 (2010)Google Scholar
  4. 4.
    Burke, D., Brown, K.: Efficiently Handling Complex Local Problems in Distributed Constraint Optimisation. In: Proc. of ECAI, pp. 701–702 (2006)Google Scholar
  5. 5.
    Cabon, B., De Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio Link Frequency Assignment. Constraints 4(1), 79–89 (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Erdös, P., Rényi, A.: On Random Graphs I. Publicationes Mathematicae Debrecen 6, 290 (1959)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Ezzahir, R., Bessiere, C., Belaissaoui, M., Bouyakhf, E.: DisChoco: A Platform for Distributed Constraint Programming. In: Proc. of the Distributed Constraint Reasoning Workshop, pp. 16–27 (2007)Google Scholar
  8. 8.
    Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised Coordination of Low-Power Embedded Devices Using the Max-Sum Algorithm. In: Proc. of AAMAS, pp. 639–646 (2008)Google Scholar
  9. 9.
    Gershman, A., Meisels, A., Zivan, R.: Asynchronous Forward-Bounding for Distributed COPs. Journal of Artificial Intelligence Research 34, 61–88 (2009)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Greenstadt, R., Grosz, B., Smith, M.: SSDPOP: Improving the Privacy of DCOP with Secret Sharing. In: Proc. of AAMAS, pp. 1098–1100 (2007)Google Scholar
  11. 11.
    Gutierrez, P., Lee, J.H.M., Lei, K.M., Mak, T.W.K., Meseguer, P.: Maintaining Soft Arc Consistencies in BnB-ADOPT +  during Search. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 365–380. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Gutierrez, P., Meseguer, P.: Saving redundant messages in BnB-ADOPT. In: Proc. of AAAI, pp. 1259–1260 (2010)Google Scholar
  13. 13.
    Gutierrez, P., Meseguer, P.: Improving BnB-ADOPT + -AC. In: Proc. of AAMAS, pp. 273–280 (2012)Google Scholar
  14. 14.
    Gutierrez, P., Meseguer, P., Yeoh, W.: Generalizing ADOPT and BnB-ADOPT. In: Proc. of IJCAI, pp. 554–559 (2011)Google Scholar
  15. 15.
    Hamadi, Y., Bessière, C., Quinqueton, J.: Distributed Intelligent Backtracking. In: Proc. of ECAI, pp. 219–223 (1998)Google Scholar
  16. 16.
    Kumar, A., Faltings, B., Petcu, A.: Distributed Constraint Optimization with Structured Resource Constraints. In: Proc. of AAMAS, pp. 923–930 (2009)Google Scholar
  17. 17.
    Kumar, A., Petcu, A., Faltings, B.: H-DPOP: Using Hard Constraints for Search Space Pruning in DCOP. In: Proc. of AAAI, pp. 325–330 (2008)Google Scholar
  18. 18.
    Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: An Open-Source Framework for Distributed Constraint Optimization. In: Proc. of the Distributed Constraint Reasoning Workshop, pp. 160–164 (2009)Google Scholar
  19. 19.
    Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., Varakantham, P.: Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Event Scheduling. In: Proc. of AAMAS, pp. 310–317 (2004)Google Scholar
  20. 20.
    Modi, P., Shen, W.-M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous Distributed Constraint Optimization with Quality Guarantees. Artificial Intelligence 161(1-2), 149–180 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Mohr, R., Henderson, T.C.: Arc and Path Consistency Revisited. Artificial Intelligence 28(2), 225–233 (1986)CrossRefGoogle Scholar
  22. 22.
    Nguyen, D.T., Yeoh, W., Lau, H.C.: Distributed Gibbs: A Memory-Bounded Sampling-Based DCOP Algorithm. In: Proc. of AAMAS, pp. 167–174 (2013)Google Scholar
  23. 23.
    Ottens, B., Dimitrakakis, C., Faltings, B.: DUCT: An Upper Confidence Bound Approach to Distributed Constraint Optimization Problems. In: Proc. of AAAI, pp. 528–534 (2012)Google Scholar
  24. 24.
    Petcu, A., Faltings, B.: A Scalable Method for Multiagent Constraint Optimization. In: Proc. of IJCAI, pp. 1413–1420 (2005)Google Scholar
  25. 25.
    Petcu, A., Faltings, B.V.: Approximations in Distributed Optimization. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 802–806. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Petcu, A., Faltings, B.: ODPOP: An algorithm for open/distributed constraint optimization. In: Proc. of AAAI, pp. 703–708 (2006)Google Scholar
  27. 27.
    Petcu, A., Faltings, B.: MB-DPOP: A New Memory-Bounded Algorithm for Distributed Optimization. In: Proc. of IJCAI, pp. 1452–1457 (2007)Google Scholar
  28. 28.
    Sultanik, E., Lass, R., Regli, W.: DCOPolis: a Framework for Simulating and Deploying Distributed Constraint Reasoning Algorithms. In: Proc. of the Distributed Constraint Reasoning Workshop (2007)Google Scholar
  29. 29.
    Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: An Asynchronous Branch-and-Bound DCOP Algorithm. Journal of Artificial Intelligence Research 38, 85–133 (2010)zbMATHGoogle Scholar
  30. 30.
    Yeoh, W., Yokoo, M.: Distributed Problem Solving. AI Magazine 33(3), 53–65 (2012)Google Scholar
  31. 31.
    Yokoo, M. (ed.): Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-agent Systems. Springer (2001)Google Scholar
  32. 32.
    Zhang, W., Wang, G., Xing, Z., Wittenberg, L.: Distributed Stochastic Search and Distributed Breakout: Properties, Comparison and Applications to Constraint Optimization Problems in Sensor Networks. Artificial Intelligence 161(1-2), 55–87 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Zivan, R., Glinton, R., Sycara, K.: Distributed Constraint Optimization for Large Teams of Mobile Sensing Agents. In: Proc. of IAT, pp. 347–354 (2009)Google Scholar
  34. 34.
    Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed constraint optimization. Artificial Intelligence 212, 1–26 (2014)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ferdinando Fioretto
    • 1
    • 2
  • Tiep Le
    • 1
  • William Yeoh
    • 1
  • Enrico Pontelli
    • 1
  • Tran Cao Son
    • 1
  1. 1.Department of Computer ScienceNew Mexico State UniversityUSA
  2. 2.Department of Mathematics and Computer ScienceUniversity of UdineItaly

Personalised recommendations