Advertisement

Social Tagging Analytics for Processing Unlabeled Resources:A Case Study on Non-geotagged Photos

  • Tuong Tri Nguyen
  • Dosam Hwang
  • Jason J. Jung
Part of the Studies in Computational Intelligence book series (SCI, volume 570)

Abstract

Social networking services (SNS) have been an important sources of geotagged resources. This paper proposes Naive Bayes method-based framework to predict the locations of non-geotagged resources on SNS. By computing TF-ICF weights (Term Frequency and Inverse Class Frequency) of tags, we discover meaningful associations between the tags and the classes (which refer to sets of locations of the resources). As the experimental result, we found that the proposed method has shown around 75% of accuracy, with respect to F1 measurement.

Keywords

Geotagging Naive Bayes Social tagging Social networking services 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer Networks 54(15), 2787–2805 (2010)CrossRefMATHGoogle Scholar
  2. 2.
    Atzori, L., Iera, A., Morabito, G., Nitti, M.: The social internet of things (siot) when social networks meet the internet of things concept, architecture and network characterization. Computer Networks 56(16), 3594–3608 (2012)CrossRefGoogle Scholar
  3. 3.
    Bischoff, K., Firan, C.S., Nejdl, W., Paiu, R.: Bridging the gap between tagging and querying vocabularies: Analyses and applications for enhancing multimedia {IR}. Web Semantics: Science, Services and Agents on the World Wide Web 8(2-3), 97–109 (2010)CrossRefGoogle Scholar
  4. 4.
    Clements, M., Serdyukov, P., de Vries, A.P., Reinders, M.J.: Using flickr geotags to predict user travel behaviour. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2010, pp. 851–852. ACM (2010)Google Scholar
  5. 5.
    Feick, R., Robertson, C.: A multi-scale approach to exploring urban places in geotagged photographs. Computers, Environment and Urban Systems (2014)Google Scholar
  6. 6.
    Jung, J.J.: Discovering community of lingual practice for matching multilingual tags from folksonomies. The Computer Journal 55(3), 337–346 (2012)CrossRefGoogle Scholar
  7. 7.
    Jung, J.J.: Cross-lingual query expansion in multilingual folksonomies: A case study on flickr. Knowledge-Based Systems 42(0), 60–67 (2013)CrossRefGoogle Scholar
  8. 8.
    Lee, I., Cai, G., Lee, K.: Exploration of geo-tagged photos through data mining approaches. Expert Systems with Applications 41(2), 397–405 (2014)CrossRefGoogle Scholar
  9. 9.
    Manning, C.D.: Foundations of statistical natural language processing, vol. 999. MIT PressGoogle Scholar
  10. 10.
    Morrison, P.: Tagging and searching: Search retrieval effectiveness of folksonomies on the world wide web. Information Processing and Management 44(4), 1562–1579 (2008)CrossRefGoogle Scholar
  11. 11.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys (CSUR) 34(1), 1–47 (2002)CrossRefGoogle Scholar
  12. 12.
    Zhang, W., Yoshida, T., Tang, X.: Tfidf, lsi and multi-word in information retrieval and text categorization. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2008, pp. 108–113. IEEE (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tuong Tri Nguyen
    • 1
  • Dosam Hwang
    • 1
  • Jason J. Jung
    • 2
  1. 1.Yeungnam UniversityGyeongsanKorea
  2. 2.Chung-Ang UniversitySeoulKorea

Personalised recommendations