Advertisement

Core Heuristics for Preference-Based Scheduling in Virtual Organizations of Utility Grids

  • Victor ToporkovEmail author
  • Anna Toporkova
  • Alexey Tselishchev
  • Dmitry Yemelyanov
  • Petr Potekhin
Part of the Studies in Computational Intelligence book series (SCI, volume 570)

Abstract

Distributed environments with the decoupling of users from resource providers are generally termed as utility Grids. The paper focuses on the problems of efficient scheduling in virtual organizations (VOs) of utility Grids while ensuring the VO stakeholders preferences. An approach based on the combination of the cyclic scheduling scheme, backfilling and several heuristic procedures is proposed and studied. Comparative simulation results are introduced for different algorithms and heuristics depending on the resource domain composition and heterogeneity as well as on the VO pricing policy. Considered scheduling approaches provide different benefits depending on the VO scheduling objectives. The results justify the use of the proposed approaches in a broad range of the considered resource environment parameters.

Keywords

Computational Node Advance Reservation Local Schedule Early Start Time Utility Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garg, S.K., Konugurthi, P., Buyya, R.: A Linear Programming-driven Genetic Algorithm for Meta-scheduling on Utility Grids. J. Par., Emergent and Distr. Systems 26, 493–517 (2011)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Lee, Y.C., Wang, C., Zomaya, A.Y., Zhou, B.B.: Profit-driven Scheduling for Cloud Services with Data Access Awareness. J. Par. and Distr. Computing 73(4), 591–602 (2012)CrossRefGoogle Scholar
  3. 3.
    Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of Grid Resource Management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource Management. State of the Art and Future Trends, pp. 271–293. Kluwer Academic Publishers, Boston (2003)Google Scholar
  4. 4.
    Rodero, I., Villegas, D., Bobroff, N., Liu, Y., Fong, L., Sadjadi, S.M.: Enabling Interoperability among Grid Meta-Schedulers. J. Grid Computing 11(2), 311–336 (2013)CrossRefGoogle Scholar
  5. 5.
    Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin, P.: Metascheduling and Heuristic Co-allocation Strategies in Distributed Computing. Computing and Informatics 6 (to be published , 2014)Google Scholar
  6. 6.
    Toporkov, V., Tselishchev, A., Yemelyanov, D., Bobchenkov, A.: Composite Scheduling Strategies in Distributed Computing with Non-dedicated Resources. Procedia Computer Science 9, 176–185 (2012)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid Computing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 128–152. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Cafaro, M., Mirto, M., Aloisio, G.: Preference-Based Matchmaking of Grid Resources with CP-Nets. J. Grid Computing 11(2), 211–237 (2013)CrossRefGoogle Scholar
  10. 10.
    Aida, K., Casanova, H.: Scheduling Mixed-parallel Applications with Advance Reservations. In: 17th IEEE Int. Symposium on HPDC, pp. 65–74. IEEE CS Press, New York (2008)Google Scholar
  11. 11.
    Ando, S., Aida, K.: Evaluation of Scheduling Algorithms for Advance Reservations. Information Processing Society of Japan SIG Notes. HPC-113, 37–42 (2007)Google Scholar
  12. 12.
    Elmroth, E., Tordsson, J.: A Standards-based Grid Resource Brokering Service Supporting Advance Reservations, Coallocation and Cross-Grid Interoperability. J. of Concurrency and Computation 25(18), 2298–2335 (2009)CrossRefGoogle Scholar
  13. 13.
    Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot Selection Algorithms in Distributed Computing with Non-dedicated and Heterogeneous Resources. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 120–134. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Azzedin, F., Maheswaran, M., Arnason, N.: A Synchronous Co-allocation Mechanism for Grid Computing Systems. Cluster Computing 7, 39–49 (2004)CrossRefGoogle Scholar
  15. 15.
    Castillo, C., Rouskas, G.N., Harfoush, K.: Resource Co-allocation for Large-scale Distributed Environments. In: 18th ACM International Symposium on High Performance Distributed Compuing, pp. 137–150. ACM, New York (2009)Google Scholar
  16. 16.
    Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An Advance Reservation-based Co-allocation Algorithm for Distributed Computers and Network Bandwidth on QoS-guaranteed Grids. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS, vol. 6253, pp. 16–34. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Blanco, H., Guirado, F., Lérida, J.L., Albornoz, V.M.: MIP Model Scheduling for Multi-Clusters. In: Caragiannis, I., Alexander, M., Badia, R.M., Cannataro, M., Costan, A., Danelutto, M., Desprez, F., Krammer, B., Sahuquillo, J., Scott, S.L., Weidendorfer, J. (eds.) Euro-Par Workshops 2012. LNCS, vol. 7640, pp. 196–206. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Olteanu, A., Pop, F., Dobre, C., Cristea, V.: A Dynamic Rescheduling Algorithm for Resource Management in Large Scale Dependable Distributed Systems. Computers and Mathematics with Applications 63(9), 1409–1423 (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    Buyya, R., Abramson, D., Giddy, J.: Economic Models for Resource Management and Scheduling in Grid Computing. J. Concurrency and Computation 14(5), 1507–1542 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Victor Toporkov
    • 1
    Email author
  • Anna Toporkova
    • 2
  • Alexey Tselishchev
    • 3
  • Dmitry Yemelyanov
    • 1
  • Petr Potekhin
    • 1
  1. 1.National Research University ”MPEI”MoscowRussia
  2. 2.Moscow State Institute of Electronics and MathematicsNational Research University Higher School of EconomicsMoscowRussia
  3. 3.European Organization for Nuclear Research (CERN)Geneva 23Switzerland

Personalised recommendations