Semantic Information Fusion of Linked Open Data and Social Big Data for the Creation of an Extended Corporate CRM Database

  • Ana I. Torre-Bastida
  • Esther Villar-Rodriguez
  • Javier Del Ser
  • Sergio Gil-Lopez
Part of the Studies in Computational Intelligence book series (SCI, volume 570)

Abstract

The amount of on-line available open information from heterogeneous sources and domains is growing at an extremely fast pace, and constitutes an important knowledge base for the consideration of industries and companies. In this context, two relevant data providers can be highlighted: the “Linked Open Data” and “SocialMedia” paradigms. The fusion of these data sources – structured the former, and raw data the latter –, along with the information contained in structured corporate databases within the organizations themselves, may unveil significant business opportunities and competitive advantage to those who are able to understand and leverage their value. In this paper, we present a use case that represents the creation of an existing and potential customer knowledge base, exploiting social and linked open data based on which any given organization might infer valuable information as a support for decision making. In order to achieve this a solution based on the synergy of big data and semantic technologies will be designed and developed. The first will be used to implement the tasks of collection and initial data fusion based on natural language processing techniques, whereas the latter will perform semantic aggregation, persistence, reasoning and retrieval of information, as well as the triggering of alerts over the semantized information.

Keywords

Big Data Social Media Linked Open Data business intelligent information fusion ontology management information modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moss, L.T., Atre, S.: Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications. Addison-Wesley (2003)Google Scholar
  2. 2.
    Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web (LDOW2008). In: Proceedings of the 17th International Conference on World Wide Web, pp. 1265–1266 (2008)Google Scholar
  3. 3.
    Hoffman, D.L., Fodor, M.: Can you measure the ROI of your social media marketing. MIT Sloan Management Review 52(1), 41–49 (2010)Google Scholar
  4. 4.
    Vuori, V.: Social media changing the competitive intelligence process: elicitation of employees’ competitive knowledge. Tampereen teknillinen yliopisto. Julkaisu-Tampere University of Technology. Publication; 1001 (2011)Google Scholar
  5. 5.
    Bingham, T., Conner, M.: The new social learning: A guide to transforming organizations through social media. Berrett-Koehler Publishers (2010)Google Scholar
  6. 6.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  7. 7.
    Kaplan, A.M., Haenlein, M.: Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons 53(1), 59–68 (2010)CrossRefGoogle Scholar
  8. 8.
    Rappaport, S.D.: Listen First!: Turning Social Media Conversations Into Business Advantage. John Wiley and Sons (2011)Google Scholar
  9. 9.
    Dey, L., Haque, S.M., Khurdiya, A., Shroff, G.: Acquiring competitive intelligence from social media. In: Proceedings of the 2011 Joint Workshop on Multilingual OCR and Analytics for Noisy Unstructured Text Data, p. 3. ACM (2011)Google Scholar
  10. 10.
    Shroff, G., Agarwal, P., Dey, L.: Enterprise information fusion for real-time business intelligence. In: IEEE International Conference on Information Fusion (FUSION), pp. 1–8 (2011)Google Scholar
  11. 11.
    Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality content in social media. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 183–194. ACM (2008)Google Scholar
  12. 12.
    Cui, B., Tung, A.K., Zhang, C., Zhao, Z.: Multiple feature fusion for social media applications. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 435–446. ACM (2010)Google Scholar
  13. 13.
    Lovett, T., O’Neill, E., Irwin, J., Pollington, D.: The calendar as a sensor: analysis and improvement using data fusion with social networks and location. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 3–12. ACM (2010)Google Scholar
  14. 14.
    Kim, H., Son, J., Jang, K.: Semantic Data Fusion: from Open Data to Linked Data. In: Proceedings of the European Semantic Web Conference (2013)Google Scholar
  15. 15.
    Hanh, H.H., Tai, N.C., Duy, K.T., Dosam, H., Jason, J.J.: Semantic Information Integration with Linked Data Mashups Approaches. International Journal of Distributed Sensor Networks 2014, Article ID 813875 (2014)Google Scholar
  16. 16.
    Torre-Bastida, A.I., Villar-Rodriguez, E., Del Ser, J., Camacho, D., Gonzalez-Rodriguez, M.: On Interlinking Linked Data Sources by Using Ontology Matching Techniques and the Map-Reduce Framework. In: Corchado, E., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 53–60. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl reasoner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–53 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ana I. Torre-Bastida
    • 1
  • Esther Villar-Rodriguez
    • 1
  • Javier Del Ser
    • 1
  • Sergio Gil-Lopez
    • 1
  1. 1.TECNALIA, OPTIMA UnitDerioSpain

Personalised recommendations