Improving Grid Nodes Coalitions by Using Reputation

  • Pasquale De MeoEmail author
  • Fabrizio Messina
  • Domenico Rosaci
  • Giuseppe M. L. Sarné
Part of the Studies in Computational Intelligence book series (SCI, volume 570)


In this work we deal with the issue of improving the QoS provided by each node of a Grid Federation, by modelling it as a problem of “Grid formation”. In the proposed model each Grid node belonging to a computational Grid, is free to join with or leave a grid with the goal of improving its satisfaction. Contextually, each grid is free to search other nodes to join with it or to remove those nodes resulted ineffective. Software agents manage the node profiles and in our model a Grid agent has the role of handling the profile of the Grid.We introduce a distributed algorithm, called GF, to handle the node activity of joining to the grid, modelled as a matching problem. Some experiments shown the effectiveness of our approach.


Grid Computing Multi-agent systems QoS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: HICSS, vol. 6. IEEE Computer Society, Washington, DC (2000)Google Scholar
  2. 2.
    De Meo, P., Ferrara, E., Rosaci, D., Sarnè, G.M.L.: How to improve group homogeneity in online social networks. In: Proceedings of the 14th WOA 2013. CEUR Workshop Proceedings, vol. 1099. (2011)Google Scholar
  3. 3.
    De Meo, P., Nocera, A., Terracina, G., Ursino, D.: Recommendation of similar users, resources and social networks in a social internetworking scenario. Information Sciences 181(7), 1285–1305 (2011)CrossRefGoogle Scholar
  4. 4.
    De Meo, P., Quattrone, G., Ursino, D.: Integration of the hl7 standard in a multiagent system to support personalized access to e-health services. IEEE Trans. on Knowledge and Data Engineering 23(8), 1244–1260 (2011)CrossRefGoogle Scholar
  5. 5.
    Foster, I., Kesselman, C.: The Grid 2: Blueprint for a new computing infrastructure. Access Online via Elsevier (2003)Google Scholar
  6. 6.
    Jennings, N.R., Wooldridge, M.: Applying agent technology. Applied Artificial Intelligence 9(4), 357–369 (1995)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Katia, L., Eduardo, H., Ignacio, M.L.: A decentralized model for scheduling independent tasks in federated grids. Future Generation Computer Systems 25(8), 840–852 (2009)CrossRefGoogle Scholar
  8. 8.
    Khan, S.U., Ahmad, I.: Non-cooperative, semi-cooperative, and cooperative games-based grid resource allocation. In: 20th International Parallel and Distributed Processing Symposium, IPDPS 2006, 10 p. IEEE (2006)Google Scholar
  9. 9.
    Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: KVM: the linux virtual machine monitor. In: Proc. of the Linux Symp., vol. 1, pp. 225–230 (2007)Google Scholar
  10. 10.
    Lax, G., Sarné, G.M.L.: CellTrust: a reputation model for C2C commerce. Electronic Commerce Research 8(4), 193–216 (2006)CrossRefGoogle Scholar
  11. 11.
    Massa, P.: A survey of trust use and modeling in current real systems. In: Trust in E-Services: Technologies, Practices and Challenges. Idea Group Publishing (2006)Google Scholar
  12. 12.
    Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.L.: HySoN: A distributed agent-based protocol for group formation in online social networks. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS, vol. 8076, pp. 320–333. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.L.: A trust-based approach for a competitive cloud/Grid computing scenario. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) IDC 2012. SCI, vol. 446, pp. 129–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.L.: A distributed agent-based approach for supporting group formation in P2P e-learning. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249, pp. 312–323. Springer, Heidelberg (2013)Google Scholar
  15. 15.
    Messina, F., Pappalardo, G., Santoro, C.: Complexsim: a flexible simulation platform for complex systems. International Journal of Simulation and Process Modelling, 8(4), 202–211Google Scholar
  16. 16.
    Messina, F., Pappalardo, G., Santoro, C.: Complexsim: An smp-aware complex network simulation framework. In: 2012 Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 861–866 (2012)Google Scholar
  17. 17.
    Messina, F., Pappalardo, G., Santoro, C.: Decentralised resource finding in cloud/grid computing environments: A performance evaluation. In: WETICE, pp. 143–148Google Scholar
  18. 18.
    Messina, F., Pappalardo, G., Santoro, C.: Exploiting gpus to simulate complex systems. In: 2013 17th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), pp. 535–540 (2013)Google Scholar
  19. 19.
    Messina, F., Pappalardo, G., Santoro, C.: Hygra: A decentralized protocol for resource discovery and job allocation in large computational grids. In: 2010 IEEE Symposium on Computers and Communications (ISCC), pp. 817–823 (2010)Google Scholar
  20. 20.
    Ranjan, R., Buyya, R., Harwood, A.: A case for cooperative and incentive-based coupling of distributed clusters. In: IEEE Int. Cluster Computing, pp. 1–11 (September 2005)Google Scholar
  21. 21.
    Ranjan, R., Harwood, A., Buyya, R., et al.: Grid federation: An economy based, scalable distributed resource management system for large-scale resource coupling. In: Grid Computing and Distributed Systems Laboratory, University of Melbourne, Australia (2004)Google Scholar
  22. 22.
    Ranjan, R., Rahman, M., Buyya, R.: A decentralized and cooperative workflow scheduling algorithm. In: 8th Int. Symp. on Cluster Computing and the Grid, pp. 1–8. IEEE (2008)Google Scholar
  23. 23.
    Rosaci, D.: Trust measures for competitive agents. Knowledge-Based Systems 28, 38–46 (2012)CrossRefGoogle Scholar
  24. 24.
    Rosaci, D., Sarné, G.M.L.: Efficient personalization of e-learning activities using a multi-device decentralized recommender system. Computational Intelligence 26(2), 121–141 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Rosaci, D., Sarné, G.M.L.: Recommending multimedia Web services in a multi-device environment. Information Systems 38(2), 198–212 (2013)CrossRefGoogle Scholar
  26. 26.
    Rosaci, D., Sarné, G.M.L.: Matching users with groups in social networks. In: Zavoral, F., Jung, J.J., Badica, C. (eds.) IDC 2013. SCI, vol. 511, pp. 45–54. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Vázquez, T., Huedo, E., Montero, R.S., Llorente, I.M.: Evaluation of a utility computing model based on the federation of grid infrastructures. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 372–381. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pasquale De Meo
    • 2
    Email author
  • Fabrizio Messina
    • 1
  • Domenico Rosaci
    • 3
  • Giuseppe M. L. Sarné
    • 3
  1. 1.DMIUniversity of CataniaCataniaItaly
  2. 2.DICAMUniversity of MessinaMessinaItaly
  3. 3.DIIES, DICEAMUniversity “Mediterranea” of Reggio CalabriaReggio CalabriaItaly

Personalised recommendations