Advertisement

Derivations and Observations of Prominence Bulk Motions and Mass

  • Terry A. KuceraEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 415)

Abstract

In this chapter we review observations and techniques for measuring both bulk flows in prominences and prominence mass. Measuring these quantities is essential to development and testing of models discussed throughout this book. Prominence flows are complex and various, ranging from the relatively linear flows along prominence spines to the complex, turbulent patterns exhibited by hedgerow prominences. Techniques for measuring flows include time slice and optical flow techniques used for motions in the plane of the sky and the use of spectral line profiles to determine Doppler velocities along the line of sight. Prominence mass measurement is chiefly done via continuum absorption measurements, but mass has also been estimated using cloud modeling and white light measurements.

Keywords

Quiescent Prominence Coronal Diagnostic Spectrometer Interface Region Image Spectrograph Prominence Material Prominence Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahn, K., Chae, J., Cao, W., & Goode, P. R. (2010, September). Patterns of flows in an intermediate prominence observed by hinode. The Astrophysical Journal, 721, 74–79.ADSCrossRefGoogle Scholar
  2. Alexander, C. E., Walsh, R. W., Régnier, S., Cirtain, J., Winebarger, A. R., Golub, L., et al. (2013, September). Anti-parallel EUV flows observed along active region filament threads with Hi-C. The Astrophysical Journal, 775, L32.ADSCrossRefGoogle Scholar
  3. Antolin, P., & Rouppe van der Voort, L. (2012, February). Observing the fine structure of loops through high-resolution spectroscopic observations of coronal rain with the crisp instrument at the swedish solar telescope. The Astrophysical Journal, 745, 152.ADSCrossRefGoogle Scholar
  4. Antolin, P., & Verwichte, E. (2011, August). Transverse oscillations of loops with coronal rain observed by hinode/solar optical telescope. The Astrophysical Journal, 736, 121.ADSCrossRefGoogle Scholar
  5. Antolin, P., Yokoyama, T., & Van Doorsselaere, T. (2014, June). Fine strand-like structure in the solar corona from magnetohydrodynamic transverse oscillations. The Astrophysical Journal, 787, L22.ADSCrossRefGoogle Scholar
  6. Anzer, U., & Heinzel, P. (2005, March). On the nature of dark extreme ultraviolet structures seen by SOHO/EIT and TRACE. The Astrophysical Journal, 622, 714–721.ADSCrossRefGoogle Scholar
  7. Athay, R. G., & Illing, R. M. E. (1986, October). Analysis of the prominence associated with the coronal mass ejection of August 18, 1980. Journal of Geophysical Research, 91, 10961–10973.ADSCrossRefGoogle Scholar
  8. Aulanier, G., & Schmieder, B. (2002, May). The magnetic nature of wide EUV filament channels and their role in the mass loading of CMEs. Astronomy and Astrophysics, 386, 1106–1122.ADSCrossRefGoogle Scholar
  9. Ballester, J. L. (2014). Magnetism and dynamics of prominences: MHD waves. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 257–294). Springer.Google Scholar
  10. Beckers, J. M. (1964, September). A study of the fine structures in the solar chromosphere. PhD thesis, Sacramento Peak Observatory, Air Force Cambridge Research Laboratories, Mass.Google Scholar
  11. Berger, T. E., Liu, W., & Low, B. C. (2012). SDO/AIA detection of solar prominence formation within a coronal cavity. The Astrophysical Journal, 758, L37.ADSCrossRefGoogle Scholar
  12. Berger, T. E., Shine, R. A., Slater, G. L., Tarbell, T. D., Title, A. M., Okamoto, T. J., et al. (2008, March). Hinode SOT observations of solar quiescent prominence dynamics. The Astrophysical Journal, 676, L89–L92.ADSCrossRefGoogle Scholar
  13. Berger, T. E., Slater, G., Hurlburt, N., Shine, R., Tarbell, T., Title, A., et al. (2010, June). Quiescent prominence dynamics observed with the Hinode Solar Optical Telescope. I. Turbulent upflow plumes. The Astrophysical Journal, 716, 1288–1307.Google Scholar
  14. Billings, D. E. (1996). A guide to the solar corona, chapter 6B. New York: Academic Press.Google Scholar
  15. Chae, J. (2003, February). The formation of a prominence in noaa active region 8668. II. TRACE observations of jets and eruptions associated with canceling magnetic features. The Astrophysical Journal, 584, 1084–1094.Google Scholar
  16. Chae, J., Ahn, K., Lim, E.-K., Choe, G.S., & Sakurai, T. (2008, December). Persistent horizontal flows and magnetic support of vertical threads in a quiescent prominence. The Astrophysical Journal, 689, L73–L76.ADSCrossRefGoogle Scholar
  17. Chae, J., & Sakurai, T. (2008, December). A test of three optical flow techniques-LCT, DAVE, and NAVE. The Astrophysical Journal, 689, 593–612.ADSCrossRefGoogle Scholar
  18. Cirigliano, D., Vial, J.-C., & Rovira, M. (2004, September). Prominence corona transition region plasma diagnostics from SOHO observations. Solar Physics, 223, 95–118.ADSCrossRefGoogle Scholar
  19. de Boer, C. R., Stellmacher, G., & Wiehr, E. (1998, June). The hot prominence periphery in EUV lines. Astronomy and Astrophysics, 334, 280–288.ADSGoogle Scholar
  20. Engvold, O. (1976, August). The fine structure of prominences. I - Observations - H-alpha filtergrams. Solar Physics, 49, 283–295.Google Scholar
  21. Engvold, O. (2014) Description and classification of prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 31–60). Springer.Google Scholar
  22. Fernley, J. A., Seaton, M. J., & Taylor, K. T. (1987, December). Atomic data for opacity calculations. VII - Energy levels, f values and photoionisation cross sections for He-like ions. Journal of Physics B Atomic Molecular Physics, 20, 6457–6476.Google Scholar
  23. Gibson, S. (2014). Coronal cavities: observations and implications for the magnetic environment of prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 321–351). Springer.Google Scholar
  24. Gilbert, H., Kilper, G., & Alexander, D. (2007, December). Observational evidence supporting cross-field diffusion of neutral material in solar filaments. The Astrophysical Journal, 671, 978–989.ADSCrossRefGoogle Scholar
  25. Gilbert, H., Kilper, G., Alexander, D., & Kucera, T. (2011, January). Comparing spatial distributions of solar prominence mass derived from coronal absorption. The Astrophysical Journal, 727, 25.ADSCrossRefGoogle Scholar
  26. Gilbert, H. R., Falco, L. E., Holzer, T. E., & MacQueen, R. M. (2006, April). Application of a new technique for deriving prominence mass from SOHO EIT Fe XII (19.5 nm) absorption features. The Astrophysical Journal, 641, 606–610.Google Scholar
  27. Gilbert, H. R., Holzer, T. E., & MacQueen, R. M. (2005, January). A new technique for deriving prominence mass from SOHO/EIT Fe XII (19.5 Nanometers) absorption features. The Astrophysical Journal, 618, 524–536.Google Scholar
  28. Golub, L., Bookbinder, J., Deluca, E., Karovska, M., Warren, H., Schrijver, C. J., et al. (1999, May). A new view of the solar corona from the transition region and coronal explorer (TRACE). Physics of Plasmas, 6, 2205–2216.ADSCrossRefGoogle Scholar
  29. Gopalswamy, N. (2014). The dynamic of eruptive prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 379–408). Springer.Google Scholar
  30. Grechnev, V. V., Uralov, A. M., Slemzin, V. A., Chertok, I. M., Filippov, B. P., Rudenko, G. V. et al. (2014). A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. I. Unusual history of an eruptive filament. Solar Physics, 289, 289–318.Google Scholar
  31. Heinzel, P. (2014). Radiative transfer in solar prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 101–128). Springer.Google Scholar
  32. Heinzel, P., Anzer, U., Schmieder, B., & Schwartz, P. (2003, September). EUV-filaments and their mass loading. In A. Wilson (Ed.), Solar variability as an input to the earth’s environment (vol. 535, pp. 447–457). Noordwijk: ESA Special Publication.Google Scholar
  33. Heinzel, P., Mein, N., & Mein, P. (1999, June). Cloud model with variable source function for solar Hα structures. II. Dynamical models. Astronomy and Astrophysics, 346, 322–328.Google Scholar
  34. Heinzel, P., Schmieder, B., Fárník, F., Schwartz, P., Labrosse, N., Kotrč, P., et al. (2008, October) Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. The Astrophysical Journal, 686, 1383–1396.ADSCrossRefGoogle Scholar
  35. Hundhausen, A. J. (1993, August). Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984–1989. Journal of Geophysical Research, 98, 13177.ADSCrossRefGoogle Scholar
  36. Karpen, J. (2014). Plasma structure and dynamics. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 235–255). Springer.Google Scholar
  37. Karzas, W. J., & Latter, R. (1961, May). Electron radiative transitions in a coulomb field. The Astrophysical Journal, 6, 167.ADSCrossRefGoogle Scholar
  38. Keady, J. J., & Kilcrease, D. P. (2000). Radiation. In A. N. Cox (Ed.), Allens astrophysical quantities (pp. 95–120). New York: AIP.Google Scholar
  39. Kilper, G., Gilbert, H., & Alexander, D. (2009, October). Mass composition in pre-eruption quiet sun filaments. The Astrophysical Journal, 704, 522–530.ADSCrossRefGoogle Scholar
  40. Koutchmy, S., Slemzin, V., Filippov, B., Noens, J.-C., Romeuf, D., & Golub, L. (2008, May). Analysis and interpretation of a fast limb CME with eruptive prominence, C-flare, and EUV dimming. Astronomy and Astrophysics, 483, 599–608.ADSCrossRefGoogle Scholar
  41. Kucera, T. A., Andretta, V., & Poland, A. I. (1998). Neutral hydrogen column depths in prominences using EUV absorption features. Solar Physics, 183, 91.CrossRefGoogle Scholar
  42. Kucera, T. A., de Pontieu, B., & Tovar, M. (2003). Prominence motions observed at high cadences in temperatures from 10,000 to 250,000 K. Solar Physics, 212, 81.ADSCrossRefGoogle Scholar
  43. Kucera, T. A., Gilbert, H. R., & Karpen, J. T. (2014). Mass flows in a prominence spine as observed in EUV. The Astrophysical Journal, 790, 68.ADSCrossRefGoogle Scholar
  44. Kucera, T. A., & Landi, E. (2006). Ultraviolet observations of prominence activation and cool loop dynamics. The Astrophysical Journal, 645, 1525.ADSCrossRefGoogle Scholar
  45. Kucera, T. A., & Landi, E. (2008). An observation of low level heating in an erupting prominence. The Astrophysical Journal, 673, 611.ADSCrossRefGoogle Scholar
  46. Landi, E., & Reale, F. (2013, July). Prominence plasma diagnostics through extreme-ultraviolet absorption. The Astrophysical Journal, 772, 71.ADSCrossRefGoogle Scholar
  47. Leese, J. A., Novak, C. S., & Taylor, V. R. (1970). The determination of cloud pattern motions from geosynchronous satellite image data. Pattern Recognition, 2, 279–280.CrossRefGoogle Scholar
  48. Lin, Y., Engvold, O. R., & Wiik, J. E. (2003, September). Counterstreaming in a Large Polar Crown Filament. Solar Physics, 216, 109–120.ADSCrossRefGoogle Scholar
  49. Liu, K., Wang, Y., Shen, C., & Wang, S. (2012, January). Critical height for the destabilization of solar prominences: Statistical results from STEREO observations. The Astrophysical Journal, 744, 168.ADSCrossRefGoogle Scholar
  50. Liu, W., Berger, T. E., & Low, B. C. (2012, February). First SDO/AIA observation of solar prominence formation following an eruption: Magnetic dips and sustained condensation and drainage. The Astrophysical Journal, 745, L21.ADSCrossRefGoogle Scholar
  51. Low, B. C., & Petrie, G. J. D. (2005, June). The internal structures and dynamics of solar quiescent prominences. The Astrophysical Journal, 626, 551–562.ADSCrossRefGoogle Scholar
  52. Mackay, D. H., & Galsgaard, K. (2001, February). Evolution of a density enhancement in a stratified atmosphere with uniform vertical magnetic field. Solar Physics, 198, 289–312.ADSCrossRefGoogle Scholar
  53. Mein, N., Mein, P., Heinzel, P., Vial, J.-C., Malherbe, J. M., & Staiger, J. (1996, May). Cloud model with variable source function for solar Hα structures. Astronomy and Astrophysics, 309, 275–283.ADSGoogle Scholar
  54. November, L. J., & Simon, G. W. (1988, October). Precise proper-motion measurement of solar granulation. The Astrophysical Journal, 333, 427–442.ADSCrossRefGoogle Scholar
  55. Orozco Suárez, D., Asensio Ramos, A., & Trujillo Bueno, J. (2012, December). Evidence for rotational motions in the feet of a quiescent solar prominence. The Astrophysical Journal, 761, L25.ADSCrossRefGoogle Scholar
  56. Orozco Suárez, D., Díaz, A. J., Asensio Ramos, A., & Trujillo Bueno, J. (2014, April). Time evolution of plasma parameters during the rise of a solar prominence instability. The Astrophysical Journal, 785, L10.ADSCrossRefGoogle Scholar
  57. Orrall, F. Q., & Schmahl, E. J. (1976). The prominence-corona interface compared with the chromosphere-corona transition region. Solar Physics, 50, 365–381.ADSCrossRefGoogle Scholar
  58. Orrall, F. Q., & Schmahl, E. J. (1980, September). The H I Lyman continuum in solar prominences and its interpretation in the presence of inhomogeneities. The Astrophysical Journal, 240, 908–922.ADSCrossRefGoogle Scholar
  59. Panasenco, O., Martin, S. F., & Velli, M. (2014, February). Apparent solar tornado-like prominences. Solar Physics, 289, 603–622.ADSCrossRefGoogle Scholar
  60. Pécseli, H., & Engvold, O. (2000, May). Modeling of prominence threads in magnetic fields: Levitation by incompressible MHD waves. Solar Physics, 194, 73–86.ADSCrossRefGoogle Scholar
  61. Penn, M. J. (2000, December). An erupting active region filament: three-dimensional trajectory and hydrogen column density. Solar Physics, 197, 313–335.ADSCrossRefGoogle Scholar
  62. Rumph, T., Bowyer, S., & Vennes, S. (1994, June). Interstellar medium continuum, autoionization, and line absorption in the extreme ultraviolet. The Astronomical Journal, 107, 2108–2114.ADSCrossRefGoogle Scholar
  63. Schmieder, B., Chandra, R., Berlicki, A., & Mein, P. (2010, May). Velocity vectors of a quiescent prominence observed by Hinode/SOT and the MSDP (Meudon). Astronomy and Astrophysics, 514, A68.ADSCrossRefGoogle Scholar
  64. Schmieder, B., Mein, N., Deng, Y., Dumitrache, C., Malherbe, J.-M., Staiger, J., et al. (2004, September). Magnetic changes observed in the formation of two filaments in a complex active region: TRACE and MSDP observations. Solar Physics, 223, 119–141.ADSCrossRefGoogle Scholar
  65. Schrijver, C. J. (2001, February). Catastrophic cooling and high-speed downflow in quiescent solar coronal loops observed with TRACE. Solar Physics, 198, 325–345.ADSCrossRefGoogle Scholar
  66. Schuck, P. W. (2006, August). Tracking magnetic footpoints with the magnetic induction equation. The Astrophysical Journal, 646, 1358–1391.ADSCrossRefGoogle Scholar
  67. Schwartz, P., Heinzel, P., Anzer, U., & Schmieder, B. (2004, July). Determination of the 3D structure of an EUV-filament observed by SoHO/CDS, SoHO/SUMER and VTT/MSDP. Astronomy and Astrophysics, 421, 323–338.ADSCrossRefGoogle Scholar
  68. Schwartz, P., Schmieder, B., Heinzel, P., & Kotrč, P. (2012, December). Study of an extended EUV filament using SoHO/SUMER observations of the hydrogen lyman lines. II. Lyman α line observed during a multi-wavelength campaign. Solar Physics, 281, 707–728.Google Scholar
  69. Stenborg, G., Vourlidas, A., & Howard, R. A. (2008, February). A fresh view of the extreme-ultraviolet corona from the application of a new image-processing technique. The Astrophysical Journal, 674, 1201–1206.ADSCrossRefGoogle Scholar
  70. Stewart, R. T., McCabe, M. K., Koomen, M. J., Hansen, R. T., & Dulk, G. A. (1974, May). Observations of coronal disturbances from 1 to 9 Rsun. I: First event of 1973, January 11. Solar Physics, 36, 203–217.Google Scholar
  71. Tziotziou, K. (2007, May). Chromospheric cloud-model inversion techniques. In P. Heinzel, I. Dorotovič, & R. J. Rutten (Eds.), The physics of chromospheric plasmas. Astronomical Society of the Pacific conference series (vol. 368, pp. 217). San Francisco: Astronomical Society of the Pacific.Google Scholar
  72. van Ballegooijen, A. A., & Cranmer, S. R. (2010, March). Tangled magnetic fields in solar prominences. The Astrophysical Journal, 711, 164–178.ADSCrossRefGoogle Scholar
  73. Vial, J.-C., Olivier, K., Philippon, A. A., Vourlidas, A., & Yurchyshyn, V. (2012, May). High spatial resolution VAULT H-Lyα observations and multiwavelength analysis of an active region filament. Astronomy and Astrophysics, 541, A108.ADSCrossRefGoogle Scholar
  74. Vourlidas, A., Howard, R. A., Esfandiari, E., Patsourakos, S., Yashiro, S., & Michalek, G. (2010, October). Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. The Astrophysical Journal, 722, 1522–1538.ADSCrossRefGoogle Scholar
  75. Wang, Y.-M. (1999, July). The jetlike nature of He II λ304 prominences. The Astrophysical Journal, 520, L71–L74.ADSCrossRefGoogle Scholar
  76. Webb, D. (2014) Eruptive prominences and their association with coronal mass ejections. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 409–430). Springer.Google Scholar
  77. Wiik, J. E., Dere, K., & Schmieder, B. (1993). UV prominences observed with the HRTS: structure and physical properties. Astronomy and Astrophysics, 273, 267.ADSGoogle Scholar
  78. Zirker, J. B., Engvold, O., & Martin, S. F. (1998, December). Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature, 396, 440–441.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratory for Solar Physics, Code 671NASA GSFCGreenbeltUSA

Personalised recommendations