Formation and Large-Scale Patterns of Filament Channels and Filaments

  • Duncan H. Mackay
Part of the Astrophysics and Space Science Library book series (ASSL, volume 415)


The properties and large-scale patterns of filament channels and filaments are considered. Initially, the global formation locations of filament channels and filaments are discussed, along with their hemispheric pattern. Next, observations of the formation of filament channels and filaments are described where two opposing views are considered. Finally, the wide range of models that have been constructed to consider the formation of filament channels and filaments over long time-scales are described, along with the origin of the hemispheric pattern of filaments.


Solar Cycle Flux Rope Region Filament Magnetic Helicity Flux Emergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



DHM would like to thank the members of the two ISSI teams on solar prominences led by Nicolas Labrosse for their stimulating discussions. In particular DHM would like to give special thanks to Vic Gaizauskas, Aad van Ballegooijen, Judy Karpen, Jose Luis Ballester, Brigitte Schmieder and Guillaume Aulanier who have all helped develop my understanding of solar prominences and aided my ability to write the present chapter. DHM would also like to thank STFC and the Leverhulme Trust for their financial support.


  1. Antiochos, S. K. (2013). Helicity condensation as the origin of coronal and solar wind structure. The Astrophysical Journal, 772, 72.ADSCrossRefGoogle Scholar
  2. Antiochos, S. K., Dahlburg, R. B., & Klimchuk, J. A. (1994). The magnetic field of solar prominences. The Astrophysical Journal, 420, L41.ADSCrossRefGoogle Scholar
  3. Archontis, V. (2008). Magnetic flux emergence in the Sun. Journal of Geophysical Research (Space Physics), 113, 3.Google Scholar
  4. Archontis, V., & Török, T. (2008). Eruption of magnetic flux ropes during flux emergence. Astronomy and Astrophysics, 492, L35.ADSCrossRefGoogle Scholar
  5. Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A., & O’Shea, E. (2004). Emergence of magnetic flux from the convection zone into the corona. Astronomy and Astrophysics, 426, 1047.ADSCrossRefGoogle Scholar
  6. Aulanier, G., & Demoulin, P. (1998). 3-D magnetic configurations supporting prominences. I. The natural presence of lateral feet. Astronomy and Astrophysics, 329, 1125.Google Scholar
  7. Babcock, H. W., & Babcock, H. D. (1955). The sun’s magnetic field, 1952–1954. The Astrophysical Journal, 121, 349.ADSCrossRefGoogle Scholar
  8. Benevolenskaya, E. E. (2005). The formation and evolution of complexes of activity, activity nests and the large-scale connectivity in the solar corona. In Large-scale Structures and their Role in Solar Activity (Vol. 346, p. 129).Google Scholar
  9. Bernasconi, P. N., Rust, D. M., & Hakim, D. (2005). Advanced automated solar filament detection and characterization code: Description, performance, and results. Solar Physics, 228, 97.ADSCrossRefGoogle Scholar
  10. Coffey, H. E., & Hanchett, C. D. (1998). Digital “Cartes Synoptiques de la Chromosphere Solaire et Catalogues des Filaments et des Centres d’Activite”. IAU Colloq. 167: New Perspectives on Solar Prominences, 150, 488.Google Scholar
  11. d’Azambuja, L., & d’Azambuja, M. (1948). Ann. Obs. Paris-Meudon, 6, 7.Google Scholar
  12. Deng, Y., Lin, Y., Schmieder, B., & Engvold, O. (2002). Filament activation and magnetic reconnection. Solar Physics, 209, 153.ADSCrossRefGoogle Scholar
  13. DeVore, C. R., & Antiochos, S. K. (2000). Dynamical formation and stability of helical prominence magnetic fields. The Astrophysical Journal, 539, 954.ADSCrossRefGoogle Scholar
  14. DeVore, C. R., Antiochos, S. K., & Aulanier, G. (2005). Solar prominence interactions. The Astrophysical Journal, 629, 1122.ADSCrossRefGoogle Scholar
  15. Engvold, O. (1998). Observations of filament structure and dynamics (Review). IAU Colloq. 167: New Perspectives on Solar Prominences, 150, 23.Google Scholar
  16. Fan, Y. (2009). The emergence of a twisted flux tube into the solar atmosphere: Sunspot rotations and the formation of a coronal flux rope. The Astrophysical Journal, 697, 1529.ADSCrossRefGoogle Scholar
  17. Fan, Y., & Gibson, S. E. (2004). Numerical imulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. The Astrophysical Journal, 609, 1123.ADSCrossRefGoogle Scholar
  18. Fan, Y., & Gibson, S. E. (2006). On the nature of the X-ray bright core in a stable filament channel. The Astrophysical Journal, 641, L149.ADSCrossRefGoogle Scholar
  19. Foukal, P. (1971). Morphological relationships in the chromospheric Hα fine structure. Solar Physics, 19, 59.ADSCrossRefGoogle Scholar
  20. Foukal, P. (1971). Hα fine structure and the chromospheric field. Solar Physics, 20, 298.ADSCrossRefGoogle Scholar
  21. Gaizauskas, V. (1998). Filament channels: Essential ingredients for filament formation (Review). IAU Colloq. 167: New Perspectives on Solar Prominences, 150, 257.Google Scholar
  22. Gaizauskas, V. (2002). Formation of a switchback during the rising phase of solar cycle 21. Solar Physics, 211, 179.ADSCrossRefGoogle Scholar
  23. Gaizauskas, V. (2008). Development of flux imbalances in solar activity nests and the evolution of filament channels. The Astrophysical Journal, 686, 1432.ADSCrossRefGoogle Scholar
  24. Gaizauskas, V., Harvey, K. L., Harvey, J. W., & Zwaan, C. (1983). Large-scale patterns formed by solar active regions during the ascending phase of cycle 21. The Astrophysical Journal, 265, 1056.ADSCrossRefGoogle Scholar
  25. Gaizauskas, V., Mackay, D. H., & Harvey, K. L. (2001). Evolution of solar filament channels observed during a major poleward surge of photospheric magnetic flux. The Astrophysical Journal, 558, 888.ADSCrossRefGoogle Scholar
  26. Gaizauskas, V., Zirker, J. B., Sweetland, C., & Kovacs, A. (1997). Formation of a solar filament channel. The Astrophysical Journal, 479, 448.ADSCrossRefGoogle Scholar
  27. Galsgaard, K., & Longbottom, A. W. (1999). Formation of solar prominences by flux convergence. The Astrophysical Journal, 510, 444.ADSCrossRefGoogle Scholar
  28. Galsgaard, K., Archontis, V., Moreno-Insertis, F., & Hood, A. W. (2007). The effect of the relative orientation between the coronal field and new emerging flux. I. Global properties. The Astrophysical Journal, 666, 516.Google Scholar
  29. Gibson, S. E., & Fan, Y. (2006). Coronal prominence structure and dynamics: A magnetic flux rope interpretation. Journal of Geophysical Research (Space Physics), 111, 12103.ADSCrossRefGoogle Scholar
  30. Gibson, S. E., Fan, Y., Mandrini, C., Fisher, G., & Demoulin, P. (2004). Observational consequences of a magnetic flux rope emerging into the corona. The Astrophysical Journal, 617, 600.ADSCrossRefGoogle Scholar
  31. Hyder, C. L. (1965). The polarization of emission lines in astronomy. II. Prominence emission-line polarization and prominence magnetic fields. The Astrophysical Journal, 141, 1374.Google Scholar
  32. Jeong, H., Chae, J., & Moon, Y.-J. (2009). Magnetic helicity injection during the formation of an intermediate filament. Journal of Korean Astronomical Society, 42, 9.ADSCrossRefGoogle Scholar
  33. Karachik, N. V., & Pevtsov, A. A. (2014). Properties of magnetic neutral line gradients and formation of filaments. Solar Physics, 289, 821.ADSCrossRefGoogle Scholar
  34. Karpen, J. T., Antiochos, S. K., Hohensee, M., Klimchuk, J. A., & MacNeice, P. J. (2001). Are magnetic dips necessary for prominence formation? The Astrophysical Journal, 553, L85.ADSCrossRefGoogle Scholar
  35. Kuckein, C., Martínez Pillet, V., & Centeno, R. (2012). An active region filament studied simultaneously in the chromosphere and photosphere. II. Doppler velocities. Astronomy and Astrophysics, 539, A131.Google Scholar
  36. Kuijpers, J. (1997). A solar prominence model. The Astrophysical Journal, 489, L201.ADSCrossRefGoogle Scholar
  37. Kuperus, M. (1996). The double inverse polarity paradigm—the sign of magnetic fields in quiescent prominences. Solar Physics, 169, 349.ADSCrossRefGoogle Scholar
  38. Leroy, J.-L. (1989). In E. R. Priest (Ed) Dynamics and structure of quiescent solar prominences (p. 77). Dordrecht: Kluwer.Google Scholar
  39. Leroy, J. L., Bommier, V., & Sahal-Brechot, S. (1983). The magnetic field in the prominences of the polar crown. Solar Physics, 83, 135.ADSCrossRefGoogle Scholar
  40. Li, K. J. (2010). Latitude migration of solar filaments. Monthly Notices of the Royal Astronomical Society, 405, 1040.ADSGoogle Scholar
  41. Lionello, R., Mikić, Z., Linker, J. A., & Amari, T. (2002). Magnetic field topology in prominences. The Astrophysical Journal, 581, 718.ADSCrossRefGoogle Scholar
  42. Lites, B. W. (2005). Magnetic flux ropes in the solar photosphere: The vector magnetic field under active region filaments. The Astrophysical Journal, 622, 1275.ADSCrossRefGoogle Scholar
  43. Lites, B. W., & Low, B. C. (1997). Flux emergence and prominences: A new scenario for 3-dimensional field geometry based on observations with the advanced stokes polarimeter. Solar Physics, 174, 91.ADSCrossRefGoogle Scholar
  44. Lites, B. W., Kubo, M., Berger, T., et al. (2010). Emergence of helical flux and the formation of an active region filament channel. The Astrophysical Journal, 718, 474.ADSCrossRefGoogle Scholar
  45. Litvinenko, Y. E., & Wheatland, M. S. (2005). A simple dynamical model for filament formation in the solar corona. The Astrophysical Journal, 630, 587.ADSCrossRefGoogle Scholar
  46. Low, B. C. (1994). Magnetohydrodynamic processes in the solar corona: Flares, coronal mass ejections, and magnetic helicity. Physics of Plasmas, 1, 1684.ADSCrossRefGoogle Scholar
  47. Low, B. C., & Hundhausen, J. R. (1995). Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. The Astrophysical Journal, 443, 818.Google Scholar
  48. Mackay, D. H., & Gaizauskas, V. (2003). Helicity as a component of filament formation. Solar Physics, 216, 121.ADSCrossRefGoogle Scholar
  49. Mackay, D. H., & van Ballegooijen, A. A. (2001). A possible solar cycle dependence to the hemispheric pattern of filament magnetic fields? The Astrophysical Journal, 560, 445.ADSCrossRefGoogle Scholar
  50. Mackay, D. H., & van Ballegooijen, A. A. (2005). New results in modeling the hemispheric pattern of solar filaments. The Astrophysical Journal, 621, L77.ADSCrossRefGoogle Scholar
  51. Mackay, D. H., & van Ballegooijen, A. A. (2006). Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. The Astrophysical Journal, 641, 577.Google Scholar
  52. Mackay, D. H., Gaizauskas, V., Rickard, G. J., & Priest, E. R. (1997). Force-free and potential models of a filament channel in which a filament forms. The Astrophysical Journal, 486, 534.ADSCrossRefGoogle Scholar
  53. Mackay, D. H., Priest, E. R., Gaizauskas, V., & van Ballegooijen, A. A. (1998). Role of helicity in the formation of intermediate filaments. Solar Physics, 180, 299.ADSCrossRefGoogle Scholar
  54. Mackay, D. H., Longbottom, A. W., & Priest, E. R. (1999). Dipped magnetic field configurations associated with filaments and barbs. Solar Physics, 185, 87.ADSCrossRefGoogle Scholar
  55. Mackay, D. H., Gaizauskas, V., & van Ballegooijen, A. A. (2000). Comparison of theory and observations of the chirality of filaments within a dispersing activity complex. The Astrophysical Journal, 544, 1122.ADSCrossRefGoogle Scholar
  56. Mackay, D. H., Gaizauskas, V., & Yeates, A. R. (2008). Where do solar filaments form?: Consequences for theoretical models. Solar Physics, 248, 51.ADSCrossRefGoogle Scholar
  57. Mackay, D. H., DeVore, C. R., & Antiochos, S. K. (2014). Global-scale consequences of magnetic-helicity injection and condensation on the sun. The Astrophysical Journal, 784, 164.ADSCrossRefGoogle Scholar
  58. Magara, T. (2006). Dynamic and topological features of photospheric and coronal activities produced by flux emergence in the sun. The Astrophysical Journal, 653, 1499.ADSCrossRefGoogle Scholar
  59. Manchester, W., IV, Gombosi, T., DeZeeuw, D., & Fan, Y. (2004). Eruption of a buoyantly emerging magnetic flux rope. The Astrophysical Journal, 610, 588.ADSCrossRefGoogle Scholar
  60. Martens, P. C., & Zwaan, C. (2001). Origin and evolution of filament-prominence systems. The Astrophysical Journal, 558, 872.ADSCrossRefGoogle Scholar
  61. Martens, P. C., Yeates, A. R., & Pillai, K. G. (2014). IAU Symposium (Vol. 300, p. 135).Google Scholar
  62. Martin, S. F. (1998). Conditions for the formation and maintenance of filaments (invited review). Solar Physics, 182, 107.ADSCrossRefGoogle Scholar
  63. Martin, S. F., Marquette, W. H., & Bilimoria, R. (1992). The solar cycle pattern in the direction of the magnetic field along the long axes of polar filaments. The Solar Cycle, 27, 53.ADSGoogle Scholar
  64. Martin, S. F., Bilimoria, R., & Tracadas, P. W. (1994). Magnetic field configurations basic to filament channels and filaments. Solar Surface Magnetism, 433, 303.CrossRefGoogle Scholar
  65. Martres, M. J., Michard, R., & Soru-Iscovici (1966). Étude morphologique de la structure magnétique des régions actives en relation avec les phénomènes chromosphériques et les éruptions solaires. II. Localisation des plages brillantes, filaments et éruptions. Annales d’Astrophysique, 29, 249.Google Scholar
  66. McIntosh, P. S. (1972). Solar magnetic fields derived from hydrogen alpha filtergrams. Reviews of Geophysics and Space Physics, 10, 837.ADSCrossRefGoogle Scholar
  67. Minarovjech, M., Rybansky, M., & Rusin, V. (1998). Prominences and the green corona over the solar activity cycle. Solar Physics, 177, 357.ADSCrossRefGoogle Scholar
  68. Mouradian, Z., & Soru-Escaut, I. (1994). A new analysis of the butterfly diagram for solar filaments.. Astronomy and Astrophysics, 290, 279.ADSGoogle Scholar
  69. Murray, M. J., Hood, A. W., Moreno-Insertis, F., Galsgaard, K., & Archontis, V. (2006). 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astronomy and Astrophysics, 460, 909.ADSCrossRefGoogle Scholar
  70. Okamoto, T. J., Tsuneta, S., Lites, B. W., et al. (2008). Emergence of a helical flux rope under an active region prominence. The Astrophysical Journal, 673, L215.ADSCrossRefGoogle Scholar
  71. Okamoto, T. J., Tsuneta, S., Lites, B. W., et al. (2009). Prominence formation associated with an emerging helical flux rope. The Astrophysical Journal, 697, 913.ADSCrossRefGoogle Scholar
  72. Oliver, R., Čadež, V. M., Carbonell, M., & Ballester, J. L. (1999). Coronal potential magnetic fields from photospheric sources with finite width. Astronomy and Astrophysics, 351, 733.ADSGoogle Scholar
  73. Pevtsov, A. A., Balasubramaniam, K. S., & Rogers, J. W. (2003). Chirality of chromospheric filaments. The Astrophysical Journal, 595, 500.ADSCrossRefGoogle Scholar
  74. Pevtsov, A. A., Panasenco, O., & Martin, S. F. (2012). Coronal mass ejections from magnetic systems encompassing filament channels without filaments. Solar Physics, 277, 185.ADSCrossRefGoogle Scholar
  75. Pintér, T., Rybanský, M., & Dorotovič, I. (2014). The polar belts of prominence occurence as an indicator of the solar magnetic field reversal. IAU Symposium (Vol. 300, p. 456).Google Scholar
  76. Priest, E. R., van Ballegooijen, A. A., & Mackay, D. H. (1996). A model for dextral and sinistral prominences. The Astrophysical Journal, 460, 530.ADSCrossRefGoogle Scholar
  77. Rust, D. M. (1967). Magnetic fields in quiescent solar prominences. I. Observations. The Astrophysical Journal, 150, 313.Google Scholar
  78. Rust, D. M., & Kumar, A. (1994). Helical magnetic fields in filaments. Solar Physics, 155, 69.ADSCrossRefGoogle Scholar
  79. Schmieder, B., Mein, N., Deng, Y., et al. (2004). Magnetic changes observed in the formation of two filaments in a complex active region: TRACE and MSDP observations. Solar Physics, 223, 119.ADSCrossRefGoogle Scholar
  80. Sheeley, N. R., Jr., Martin, S. F., Panasenco, O., & Warren, H. P. (2013). Using Coronal Cells to Infer the Magnetic Field Structure and Chirality of Filament Channels. The Astrophysical Journal, 772, 88.ADSCrossRefGoogle Scholar
  81. Shimojo, M., Yokoyama, T., Asai, A., Nakajima, H., & Shibasaki, K. (2006). One solar-cycle observations of prominence activities using the nobeyama radioheliograph 1992–2004. Publications of the Astronomical Society of Japan, 58, 85.ADSCrossRefGoogle Scholar
  82. Tang, F. (1987). Quiescent prominences: Where are they formed? Solar Physics, 107, 233.ADSCrossRefGoogle Scholar
  83. Topka, K., Moore, R., Labonte, B. J., & Howard, R. (1982). Evidence for a poleward meridional flow on the sun. Solar Physics, 79, 231.ADSCrossRefGoogle Scholar
  84. van Ballegooijen, A. A., & Martens, P. C. H. (1989). Formation and eruption of solar prominences. The Astrophysical Journal, 343, 971.ADSCrossRefGoogle Scholar
  85. van Ballegooijen, A. A., & Martens, P. C. H. (1990). Magnetic fields in quiescent prominences. The Astrophysical Journal, 361, 283.ADSCrossRefGoogle Scholar
  86. van Ballegooijen, A. A., Cartledge, N. P., & Priest, E. R. (1998). Magnetic flux transport and the formation of filament channels on the sun. The Astrophysical Journal, 501, 866.ADSCrossRefGoogle Scholar
  87. van Ballegooijen, A. A., Priest, E. R., & Mackay, D. H. (2000). Mean field model for the formation of filament channels on the sun. The Astrophysical Journal, 539, 983.ADSCrossRefGoogle Scholar
  88. Wang, Y.-M., & Muglach, K. (2007). On the formation of filament channels. The Astrophysical Journal, 666, 1284.ADSCrossRefGoogle Scholar
  89. Wang, Y.-M., Sheeley, N. R., Jr., & Stenborg, G. (2013). Fe XII stalks and the origin of the axial field in filament channels. The Astrophysical Journal, 770, 72.ADSCrossRefGoogle Scholar
  90. Welsch, B. T., DeVore, C. R., & Antiochos, S. K. (2005). Magnetic reconnection models of prominence formation. The Astrophysical Journal, 634, 1395.ADSCrossRefGoogle Scholar
  91. Xia, C., Keppens, R., & Guo, Y. (2014). Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope. The Astrophysical Journal, 780, 130.ADSCrossRefGoogle Scholar
  92. Yeates, A. R., & Mackay, D. H. (2012). Chirality of high-latitude filaments over solar cycle 23. The Astrophysical Journal, 753, L34.ADSCrossRefGoogle Scholar
  93. Yeates, A. R., Mackay, D. H., & van Ballegooijen, A. A. (2007). Modelling the global solar corona: Filament chirality observations and surface simulations. Solar Physics, 245, 87.ADSCrossRefGoogle Scholar
  94. Yeates, A. R., Mackay, D. H., & van Ballegooijen, A. A. (2008). Modelling the global solar corona II: Coronal evolution and filament chirality comparison. Solar Physics, 247, 103.ADSCrossRefGoogle Scholar
  95. Yeates, A. R., Mackay, D. H., & van Ballegooijen, A. A. (2008). Evolution and distribution of current helicity in full-sun simulations. The Astrophysical Journal, 680, L165.ADSCrossRefGoogle Scholar
  96. Zirker, J. B., Martin, S. F., Harvey, K., & Gaizauskas, V. (1997). Global magnetic patterns of chirality. Solar Physics, 175, 27.ADSCrossRefGoogle Scholar
  97. Zou, P., Li, Q.-X., & Wu, N. (2014). Non-linear analysis of the long-term behaviour of solar filaments. Monthly Notices of the Royal Astronomical Society, 437, 38.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of St AndrewsFifeUK

Personalised recommendations