Dynamic Optimization Techniques for the Motion Coordination of Autonomous Vehicles

  • Jorge Estrela da Silva
  • João Borges de Sousa
  • Fernando Lobo Pereira
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 456)

Abstract

Problems of motion coordination for autonomous vehicles are discussed in the framework of dynamic programming (DP). The challenges of the practical deployment of DP-based controllers are illustrated with a formation control problem.

References

  1. 1.
    Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhauser, BostonGoogle Scholar
  2. 2.
    Blanchini F, Miani S (2008) Set-theoretic methods in control. Birkhauser, BostonMATHGoogle Scholar
  3. 3.
    Chen Y-Q, Wang Z (2005) Formation control: a review and a new consideration. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005 (IROS 2005), pp 3181–3186Google Scholar
  4. 4.
    Cristiani E, Falcone M (2009) Fully-discrete schemes for the value function of pursuit-evasion games with state constraints. Ann Int Soc Dyn Games 10:178–205MathSciNetGoogle Scholar
  5. 5.
    da Silva JE, de Sousa JB (2011) Dynamic programming techniques for feedback control. In: Proceedings of the IFAC 18th world congress, Milan, August 2011Google Scholar
  6. 6.
    Do KD (2011) Practical formation control of multiple underactuated ships with limited sensing ranges. Robot Auton Syst 59(6):457–471CrossRefGoogle Scholar
  7. 7.
    Dunbar WB, Murray RM (2006) Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4):549–558MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fiorelli E, Leonard NE, Bhatta P, Paley DA, Bachmayer R, Fratantoni DM (2006) Multi-AUV control and adaptive sampling in Monterey bay. IEEE J Oceanic Eng 31(4):935–948CrossRefGoogle Scholar
  9. 9.
    Fleming WH, Soner HM (2006) Controlled Markov processes and viscosity solutions. Springer, New YorkGoogle Scholar
  10. 10.
    Healey AJ (2001) Application of formation control for multi-vehicle robotic minesweeping. In: Proceedings of the 40th IEEE conference on decision and control, vol 2, pp 1497–1502Google Scholar
  11. 11.
    Hedrick JK, Tomizuka M, Varaiya P (1994) Control issues in automated highway systems. IEEE Control Syst 14(6):21–32CrossRefGoogle Scholar
  12. 12.
    Isaacs R (1965) Differential games; a mathematical theory with applications to warfare and pursuit, control and optimization. Wiley, New YorkGoogle Scholar
  13. 13.
    Kristiansen R, Nicklasson PJ (2009) Spacecraft formation flying: a review and new results on state feedback control. Acta Astronaut 65(11–12):1537–1552CrossRefGoogle Scholar
  14. 14.
    Lasserre J, Roubellat F (1985) Measuring decision flexibility in production planning. IEEE Trans Autom Control 30(5):447–452MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Leonard NE, Fiorelli E (2001). Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE conference on decision and control, vol 3, pp 2968–2973Google Scholar
  16. 16.
    Mitchell IM (2008) The flexible, extensible and efficient toolbox of level set methods. J Sci Comput 35(2–3):300–329MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Turpin M, Michael N, Kumar V (2012) Decentralized formation control with variable shapes for aerial robots. In: 2012 IEEE international conference on robotics and automation (ICRA), pp 23–30Google Scholar
  18. 18.
    van der Walle D, Fidan B, Sutton A, Yu C, Anderson BDO (2008) Non-hierarchical UAV formation control for surveillance tasks. In: American control conference, 2008, pp 777–782Google Scholar
  19. 19.
    Vincent TL, Leitmann G (1970) Control-space properties of cooperative games. J Optim Theory Appl 6:91–113. doi:10.1007/BF00927045 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Wang PKC (1989) Navigation strategies for multiple autonomous mobile robots moving in formation. In: Proceedings of the IEEE/RSJ international workshop on intelligent robots and systems ’89. The autonomous mobile robots and its applications (IROS ’89), pp 486–493Google Scholar
  21. 21.
    Zhou C, Lei M, Zhou S, Zhang W (2011) Collision-free UAV formation flight control based on nonlinear MPC. In: 2011 international conference on electronics, communications and control (ICECC), vol 21, pp 1951–1956Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jorge Estrela da Silva
    • 1
  • João Borges de Sousa
    • 2
  • Fernando Lobo Pereira
    • 2
  1. 1.School of EngineeringPolytechnic Institute of PortoPortoPortugal
  2. 2.Faculty of EngineeringPorto UniversityPortoPortugal

Personalised recommendations