Advertisement

A Model Predictive Control Approach to AUVs Motion Coordination

  • Fernando Lobo Pereira
  • J. Borges de Sousa
  • R. Gomes
  • P. Calado
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 456)

Abstract

The problem of coordinating the motion of autonomous underwater vehicles under constrained acoustic communications is formulated and investigated in the context of the model predictive control (MPC) framework. The impact of acoustic communications and perturbations on the motion performance and robustness is discussed. A reach set formulation of the MPC scheme is outlined.

Keywords

Optimal Control Problem Model Predictive Control Autonomous Underwater Vehicle Acoustic Communication Packet Dropout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Curtin T, Bellingham J, Catipovic J, Webb D (1993) Autonomous Ocean Sampling Networks. Oceanography 6(3):86–94CrossRefGoogle Scholar
  2. 2.
    P. Deshpande, P. Menon, and C. Edwards. Delayed static output feedback control of a network of double integrator agents. Automatica, 49(11):3498-Â3501, 2013.Google Scholar
  3. 3.
    Fax J, Murray M (2004) Information flow and cooperative control of vehicle formations. IEEE Trans. Automat. Control 49:1465–1476MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fiorelli E, Leonard N, Bhatta P, Paley D, Bachmayer R, Fratantoni D (2006) Multi-AUV Control and Adaptive Sampling in Monterey Bay. IEEE J. of Oceanic Eng. 31(4):935–948CrossRefGoogle Scholar
  5. 5.
    T. Fossen. Guidance and Control of Ocean Vehicles. John Wiley & Sons Ltd., 1994.Google Scholar
  6. 6.
    Franco E, Magni L, Parisini T, Polycarpou M, Raimondo D (2008) Cooperative constrained control of distributed agents with nonlinear dynamics and delayed information exchange: A stabilizing receding-horizon approach. IEEE Trans. Automatic Control 53:324–338MathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Grüne, F. Allgöwer, R. Findeisen, J. Fischer, D. Groß, U. Hanebeck, B. Kern, M. Müller, J. Pannek, M. Reble, O. Stursberg, and P. Varuttiand K. Worthmann. chapter Distributed and Networked Model Predictive Control, pages 111–167. Springer-Verlag, 2014.Google Scholar
  8. 8.
    L. Gruene, J. Pannek, and K. Worthmann. A networked constrained nonlinear mpc scheme. In Procs European Control Conference, Budapest, Hungary, 2009.Google Scholar
  9. 9.
    Jones M, Miller L, Woodruff D, Ewert D (2007) Mapping of Submerged Aquatic Vegetation Using Autonomous Underwater Vehicles in Nearshore Regions. Proc. Oceans 2007:1–7Google Scholar
  10. 10.
    Keviczky T, Borrelli F, Fregene K, Godbole D, Balas G (2008) Decentralized receding horizon control and coordination of autonomous vehicle formations. IEEE Trans. Control Systems Technology 16:19–33CrossRefGoogle Scholar
  11. 11.
    G. Kladis, P. Menon, and C. C. Edwards. Cooperative tracking for a swarm of unmanned aerial vehicles: A distributed tagaki-sugeno fuzzy framework design. In 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA December 12–15, 2011.Google Scholar
  12. 12.
    A. Kurzhanski and P. Varaiya. Dynamic optimization for reachability problems. J. Optimization Theory and Applications, 108, 2001.Google Scholar
  13. 13.
    A. Kurzhanski and P. Varaiya. Analysis and Design of Nonlinear Control Systems, chapter The Hamilton-Jacobi Type Equations for Nonlinear Target Control and Their Approximation, pages 77–90. Springer-Verlag, 2008.Google Scholar
  14. 14.
    Leonard N, Paley D, Lekien F, Sepulchre R, Fratantoni D, Davis R (2007) Collective Motion, Sensor Networks, and Ocean Sampling. Procs of the IEEE 95(1):48–74CrossRefGoogle Scholar
  15. 15.
    F. Lobo Pereira, J. Sousa, R. Gomes, and P. Calado. Reach set formulation of a model predictive control scheme. In MTNS 2012, 20th Int. Symp. on Mathematical Theory of Network of Systems, Melbourne, Australia, July 9–13, 2012.Google Scholar
  16. 16.
    Menon P, Edwards C (2009) Decentralised static output feedback stabilisation and synchronisation of networks. Automatica 45(12):2910–2916MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    I. Michel. The flexible, extensible and efficient toolbox of level set methods. J. of Scientific Computing, 35.Google Scholar
  18. 18.
    Michel I, Bayen A, Tomlin C (2005) Computing reachable sets for continuous dynamics games using level sets methods. IEEE Trans. on Automatic Control 50:980–1001CrossRefGoogle Scholar
  19. 19.
    P. Ogren, M. Egerstedt, and X. Hu. A control lyapunov function approach to multi-agent coordination. In 40th IEEE Conference on Decision and Control, Orlando, Florida USA, December, volume I, pages 1150–1155, 2001.Google Scholar
  20. 20.
    D. Popa, A. Sanderson, R. Komerska, S. Mupparapu, D. Blidberg, and S. Chappel. Adaptive sampling algorithms for multiple autonomous underwater vehicles. In IEEE/OES Autonomous Underwater Vehicles, pages 108–118, 2004.Google Scholar
  21. 21.
    T. Prestero. Verification of a six-degree of freedom simulation model for the remus autonomous underwater vehicle. Master’s thesis, MIT, WHOI, Cambridge, MA, 2001.Google Scholar
  22. 22.
    Ren W, Beard R (2008) chapter Distributed Consensus in Multi-vehicle Cooperative Control. Springer-Verlag, LondonCrossRefGoogle Scholar
  23. 23.
    Ren W, Cao Y (2011) chapter Distributed Coordination of Multi-agent Networks. Springer-Verlag, LondonCrossRefGoogle Scholar
  24. 24.
    Rigby P, Williams S, Pizarro O, Colquhoun J (2007) Effective Benthic Surveying with Autonomous Underwater Vehicles. Oceans 2007:1–6Google Scholar
  25. 25.
    H Riksfjord, O. Haug, and J. Hovem. Underwater acoustic networks - survey on communication challenges with transmission simulations. In Procs of SENSORCOMM ’09, pages 300–305, 2009.Google Scholar
  26. 26.
    H. Schmidt, J. Bellingham, M. Johnson, D. Herold, D. Farmer, and R. Pawlowicz. Real-time frontal mapping with AUVs in a coastal environment. In Proc. MTS/IEEE OCEANS ’96, pages 1094–1098, 1996.Google Scholar
  27. 27.
    J. Sousa, B. Maciel, and F. Pereira. Sensor systems and networked vehicles. Networks and Heterogeneous Media, 4, 2009.Google Scholar
  28. 28.
    J. Sousa and R. Martins. Control architecture and software tool set for networked operations of ocean vehicles. In Proc. 9th IFAC MCMC, 2012.Google Scholar
  29. 29.
    Stilwell D, Bishop B (2000) Platoons of underwater vehicles. IEEE Control Systems Magazine 20(6):45–52Google Scholar
  30. 30.
    R. Vinter. Optimal Control. Birkhauser, 2000.Google Scholar
  31. 31.
    Willcox J, Bellingham J, Zhang Y, Baggeroer A (2001) Performance Metrics for Oceanographic Surveys with Autonomous Underwater Vehicles. IEEE J. of Oceanic Eng. 26(4):711–725CrossRefGoogle Scholar
  32. 32.
    Y. Zhang and H. Mehrjerdi. A survey on multiple unmanned vehicles formation control and coordination: normal and fault situations. In ICUAS - International Conference on Unmanned Aircraft Systems, Atlanta, GA, USA, May 28–31, pages 1087–1096, 2013.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fernando Lobo Pereira
    • 1
  • J. Borges de Sousa
    • 1
  • R. Gomes
    • 1
  • P. Calado
    • 1
  1. 1.Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations