Learning Fully-Connected CRFs for Blood Vessel Segmentation in Retinal Images

  • José Ignacio Orlando
  • Matthew Blaschko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

In this work, we present a novel method for blood vessel segmentation in fundus images based on a discriminatively trained, fully connected conditional random field model. Retinal image analysis is greatly aided by blood vessel segmentation as the vessel structure may be considered both a key source of signal, e.g. in the diagnosis of diabetic retinopathy, or a nuisance, e.g. in the analysis of pigment epithelium or choroid related abnormalities. Blood vessel segmentation in fundus images has been considered extensively in the literature, but remains a challenge largely due to the desired structures being thin and elongated, a setting that performs particularly poorly using standard segmentation priors such as a Potts model or total variation. In this work, we overcome this difficulty using a discriminatively trained conditional random field model with more expressive potentials. In particular, we employ recent results enabling extremely fast inference in a fully connected model. We find that this rich but computationally efficient model family, combined with principled discriminative training based on a structured output support vector machine yields a fully automated system that achieves results statistically indistinguishable from an expert human annotator. Implementation details are available at http://pages.saclay.inria.fr/ matthew.blaschko/projects/retina/.

Keywords

Blood vessel segmentation Fundus imaging Conditional Random Fields Structured Output SVM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images–a survey. Computer Methods and Programs in Biomedicine 108(1), 407–433 (2012)CrossRefGoogle Scholar
  2. 2.
    Miri, M.S., Mahloojifar, A.: Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE T-BME 58(5), 1183–1192 (2011)CrossRefGoogle Scholar
  3. 3.
    Kanski, J.J., Bowling, B.: Synopsis of Clinical Ophthalmology. Saunders Limited (2012)Google Scholar
  4. 4.
    Li, Y., Gregori, G., Knighton, R.W., Lujan, B.J., Rosenfeld, P.J.: Registration of OCT fundus images with color fundus photographs based on blood vessel ridges. Optics Express 19(1), 7 (2011)CrossRefGoogle Scholar
  5. 5.
    Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE T-MI 26(10), 1357–1365 (2007)CrossRefGoogle Scholar
  6. 6.
    Becker, C., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilinear structure segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 526–533. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE T-MI 25(9) (2006)Google Scholar
  8. 8.
    Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Medical Image Analysis 11(1), 47–61 (2007)CrossRefGoogle Scholar
  9. 9.
    Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Computers in Biology and Medicine 40(4), 438–445 (2010)CrossRefGoogle Scholar
  10. 10.
    Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognition (2012)Google Scholar
  11. 11.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Ensemble classification system applied for retinal vessel segmentation on child images containing various vessel profiles. Image Analysis and Recognition (2012)Google Scholar
  12. 12.
    Vlachos, M., Dermatas, E.: Multi-scale retinal vessel segmentation using line tracking. Computerized Medical Imaging and Graphics 34(3), 213–227 (2010)CrossRefGoogle Scholar
  13. 13.
    Li, S.Z.: Markov Random Field Modeling in Image Analysis, 3rd edn. Springer (2009)Google Scholar
  14. 14.
    Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NIPS (2012)Google Scholar
  15. 15.
    Joachims, T., Finley, T., Yu, C.N.J.: Cutting-plane training of structural SVMs. Machine Learning 77(1), 27–59 (2009)CrossRefMATHGoogle Scholar
  16. 16.
    Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE T-MI 23(4), 501–509 (2004)CrossRefGoogle Scholar
  17. 17.
    Schölkopf, B.: Support Vector Learning. PhD thesis, Oldenbourg Verlag, Munich (1997)Google Scholar
  18. 18.
    Soares, J.V., Leandro, J.J., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-d Gabor wavelet and supervised classification. IEEE T-MI 25(9) (2006)Google Scholar
  19. 19.
    Al-Rawi, M., Qutaishat, M., Arrar, M.: An improved matched filter for blood vessel detection of digital retinal images. Computers in Biology and Medicine 37(2), 262–267 (2007)CrossRefGoogle Scholar
  20. 20.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Marín, D., Aquino, A., Gegúndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE T-MI 30(1), 146–158 (2011)CrossRefGoogle Scholar
  22. 22.
    Sinthanayothin, C., Boyce, J.F., Cook, H.L., Williamson, T.H.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. British Journal of Ophthalmology 83(8), 902–910 (1999)CrossRefGoogle Scholar
  23. 23.
    Saleh, M.D., Eswaran, C.: An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding. Computer Methods in Biomechanics and Biomedical Engineering 15(5), 517–525 (2012)CrossRefGoogle Scholar
  24. 24.
    Zana, F., Klein, J.-C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE TIP 10(7), 1010–1019 (2001)MATHGoogle Scholar
  25. 25.
    You, X., Peng, Q., Yuan, Y., Cheung, Y.-M., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognition 44(10) (2011)Google Scholar
  26. 26.
    Palomera-Pérez, M.A., Martinez-Perez, M.E., Benítez-Pérez, H., Ortega-Arjona, J.L.: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE T-ITB 14(2), 500–506 (2010)Google Scholar
  27. 27.
    Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE T-MI 28(9), 1488–1497 (2009)CrossRefGoogle Scholar
  28. 28.
    Espona, L., Carreira, M.J., Penedo, M.G., Ortega, M.: Retinal vessel tree segmentation using a deformable contour model. In: ICPR (2008)Google Scholar
  29. 29.
    Espona, L., Carreira, M.J., Ortega, M., Penedo, M.G.: A snake for retinal vessel segmentation. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 178–185. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • José Ignacio Orlando
    • 1
    • 2
    • 3
  • Matthew Blaschko
    • 1
    • 4
  1. 1.Équipe GalenINRIA SaclayÎle-de-FranceFrance
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasCONICETArgentina
  3. 3.Pladema InstituteUNCPBAArgentina
  4. 4.Center for Learning and Visual ComputingÉcole Centrale ParisFrance

Personalised recommendations