Coronary Lumen and Plaque Segmentation from CTA Using Higher-Order Shape Prior

  • Yoshiro Kitamura
  • Yuanzhong Li
  • Wataru Ito
  • Hiroshi Ishikawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

We propose a novel segmentation method based on multi-label graph cuts utilizing higher-order potentials to impose shape priors. Each higher-order potential is defined with respect to a candidate shape, and takes a low value if and only if most of the voxels inside the shape are foreground and most of those outside are background. We apply this technique to coronary lumen and plaque segmentation in CT angiography, exploiting the prior knowledge that the vessel walls tend to be tubular, whereas calcified plaques are more likely globular. We use the Hessian analysis to detect the candidate shapes and introduce corresponding higher-order terms into the energy. Since each higher-order term has any effect only when its highly specific condition is met, we can add many of them at possible locations and sizes without severe side effects. We show the effectiveness of the method by testing it on the standardized evaluation framework presented at MICCAI segmentation challenge 2012. The method achieved values comparable to the best in each of the sensitivity and positive predictive value, placing it at the top in average rank.

Keywords

Shape prior Graph cuts Multiple labels Higher order function Coronary stenosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lesage, D., Angelini, E., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis 13(6), 819–845 (2009)CrossRefGoogle Scholar
  2. 2.
    Kirişli, H.A., Schaap, M., Metz, C., et al.: Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Medical Image Analysis 17(8), 859–876 (2013)CrossRefGoogle Scholar
  3. 3.
    Cetin, S., Unal, G.: Automatic detection of coronary artery stenosis in CTA based on vessel intensity and geometric features. In: Proc. of MICCAI 2012 Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge (2012)Google Scholar
  4. 4.
    Mohr, B., Masood, S., Plakas, C.: Accurate stenosis detection and quantification in coronary CTA. In: Proc. of MICCAI 2012 Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge (2012)Google Scholar
  5. 5.
    Wang, C., Moreno, R., Smedby, Ö.: Vessel segmentation using implicit model-guided level sets. In: Proc. of MICCAI 2012 Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge (2012)Google Scholar
  6. 6.
    Ramalingam, S., Kohli, P., Alahari, K., Torr, P.H.S.: Exact inference in multi-label CRFs with higher order cliques. In: Proc. of CVPR (2008)Google Scholar
  7. 7.
    Kohli, P., Ladicky, L., Torr, P.H.S.: Robust higher order potentials for enforcing label consistency. In: Proc. of CVPR (2008)Google Scholar
  8. 8.
    Kadoury, S., Abi-Jaoudeh, N., Valdes, P.A.: Higher-Order CRF Tumor Segmentation with Discriminant Manifold Potentials. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 719–726. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Law, M.W.K., Chung, A.C.S.: Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Eslami, A., Aboee, A., Hodaei, Z., Moghaddam, M.J., Carlier, S., Katouzian, A., Navab, N.: Quantification of coronary arterial stenosis by inflating tubes in CTA images. In: Proc. of MICCAI 2012 Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge (2012)Google Scholar
  11. 11.
    Kitamura, Y., Li, Y., Ito, W.: Automatic coronary extraction by supervised detection and shape matching. In: Proc. of ISBI, pp. 234–237 (2012)Google Scholar
  12. 12.
    Lugauer, F., Zhang, J., Zheng, Y., Hornegger, J., Kelm, M.: Improving Accuracy in Coronary Lumen Segmentation via Explicit Calcium Exclusion, Learning-based Ray Detection and Surface Optimization. In: Proc. of SPIE MI, 90343U (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yoshiro Kitamura
    • 1
    • 2
  • Yuanzhong Li
    • 1
  • Wataru Ito
    • 1
  • Hiroshi Ishikawa
    • 2
  1. 1.Imaging Technology CenterFujifilm CorporationTokyoJapan
  2. 2.Department of Computer Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations