Advertisement

A Fully Bayesian Inference Framework for Population Studies of the Brain Microstructure

  • Maxime Taquet
  • Benoît Scherrer
  • Jurriaan M. Peters
  • Sanjay P. Prabhu
  • Simon K. Warfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

Models of the diffusion-weighted signal are of strong interest for population studies of the brain microstructure. These studies are typically conducted by extracting a scalar property from the model and subjecting it to null hypothesis significance testing. This process has two major limitations: the reported p-value is a weak predictor of the reproducibility of findings and evidence for the absence of microstructural alterations cannot be gained. To overcome these limitations, this paper proposes a Bayesian framework for population studies of the brain microstructure represented by multi-fascicle models. A hierarchical model is built over the biophysical parameters of the microstructure. Bayesian inference is performed by Hamiltonian Monte Carlo sampling and results in a joint posterior distribution over the latent microstructure parameters for each group. Inference from this posterior enables richer analyses of the brain microstructure beyond the dichotomy of significance testing. Using synthetic and in-vivo data, we show that our Bayesian approach increases reproducibility of findings from population studies and opens new opportunities in the analysis of the brain microstructure.

Keywords

Microstructure Diffusion Imaging Bayesian Inference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian data analysis. CRC press (2013)Google Scholar
  2. 2.
    Hoffman, M.D., Gelman, A.: The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research (2013)Google Scholar
  3. 3.
    Nuzzo, R.: Scientific method: statistical errors. Nature 506(7487), 150–152 (2014)CrossRefGoogle Scholar
  4. 4.
    Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 59(3), 2241–2254 (2012)CrossRefGoogle Scholar
  5. 5.
    Pasternak, O., Westin, C.F., Bouix, S., et al.: Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. The Journal of Neuroscience 32(48), 17365–17372 (2012)CrossRefGoogle Scholar
  6. 6.
    Scherrer, B., Warfield, S.K.: Parametric representation of multiple white matter fascicles from cube and sphere diffusion MRI. PLoS one 7(11), e48232 (2012)Google Scholar
  7. 7.
    Schwartzman, A., Dougherty, R., Taylor, J.: Cross-subject comparison of principal diffusion direction maps. Magnetic Resonance in Medicine 53(6), 1423–1431 (2005)CrossRefGoogle Scholar
  8. 8.
    Taquet, M., Scherrer, B., Commowick, O., Peters, J.M., Sahin, M., Macq, B., Warfield, S.K.: A mathematical framework for the registration and analysis of multi-fascicle models for population studies of the brain microstructure. IEEE Transactions on Medical Imaging 33(2), 504–517 (2014)CrossRefGoogle Scholar
  9. 9.
    Taquet, M., Scherrer, B., Boumal, N., Macq, B., Warfield, S.K.: Estimation of a multi-fascicle model from single b-value data with a population-informed prior. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 695–702. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maxime Taquet
    • 1
  • Benoît Scherrer
    • 1
  • Jurriaan M. Peters
    • 1
  • Sanjay P. Prabhu
    • 1
  • Simon K. Warfield
    • 1
  1. 1.Computational Radiology LaboratoryHarvard Medical SchoolBostonUSA

Personalised recommendations