Monte Carlo Localization for Teach-and-Repeat Feature-Based Navigation

  • Matías Nitsche
  • Taihú Pire
  • Tomáš Krajník
  • Miroslav Kulich
  • Marta Mejail
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8717)


This work presents a combination of a teach-and-replay visual navigation and Monte Carlo localization methods. It improves a reliable teach-and-replay navigation method by replacing its dependency on precise dead-reckoning by introducing Monte Carlo localization to determine robot position along the learned path. In consequence, the navigation method becomes robust to dead-reckoning errors, can be started from at any point in the map and can deal with the ‘kidnapped robot’ problem. Furthermore, the robot is localized with MCL only along the taught path, i.e. in one dimension, which does not require a high number of particles and significantly reduces the computational cost. Thus, the combination of MCL and teach-and-replay navigation mitigates the disadvantages of both methods. The method was tested using a P3-AT ground robot and a Parrot AR.Drone aerial robot over a long indoor corridor. Experiments show the validity of the approach and establish a solid base for continuing this work.


Mobile Robot Position Estimate Iterative Learn Control Dead Reckoning Autonomous Navigation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press (2005)Google Scholar
  2. 2.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1052–1067 (2007)CrossRefGoogle Scholar
  3. 3.
    Klein, G., Murray, D.: Parallel Tracking and Mapping on a camera phone. In: 2009 8th IEEE International Symposium on Mixed and Augmented Reality (2009)Google Scholar
  4. 4.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision (2003)Google Scholar
  5. 5.
    Chen, Z., Birchfield, S.: Qualitative vision-based mobile robot navigation. In: Proceedings International Conference on Robotics and Automation, ICRA, pp. 2686–2692. IEEE (2006)Google Scholar
  6. 6.
    Zhang, A.M., Kleeman, L.: Robust appearance based visual route following for navigation in large-scale outdoor environments. The International Journal of Robotics Research 28(3), 331–356 (2009)CrossRefGoogle Scholar
  7. 7.
    Krajník, T., Faigl, J., Vonásek, V., Kosnar, K., Kulich, M., Preucil, L.: Simple yet stable bearing-only navigation. Journal of Field Robotics 27(5), 511–533 (2010)CrossRefGoogle Scholar
  8. 8.
    Krajnik, T., Nitsche, M., Pedre, S., Preucil, L.: A simple visual navigation system for an UAV. In: Systems, Signals and Devices, pp. 1–6 (2012)Google Scholar
  9. 9.
    Furgale, P., Barfoot, T.: Visual teach and repeat for longrange rover autonomy. Journal of Field Robotics (2006), 1–27 (2010)Google Scholar
  10. 10.
    Siagian, C., Chang, C.K., Itti, L.: Autonomous Mobile Robot Localization and Navigation Using a Hierarchical Map Representation Primarily Guided by Vision. Journal of Field Robotics 31(3), 408–440 (2014)CrossRefGoogle Scholar
  11. 11.
    Krajník, T., Pedre, S., Přeučil, L.: Monocular Navigation System for Long-Term Autonomy. In: Proceedings of the International Conference on Advanced Robotics, Montevideo. IEEE (2013)Google Scholar
  12. 12.
    Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In: IEEE International Conference on Robotics and Automation, vol. 2 (1999)Google Scholar
  13. 13.
    Niu, M., Mao, X., Liang, J., Niu, B.: Object tracking based on extended surf and particle filter. In: Huang, D.-S., Jo, K.-H., Zhou, Y.-Q., Han, K. (eds.) ICIC 2013. LNCS, vol. 7996, pp. 649–657. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Li, R.: An Object Tracking Algorithm Based on Global SURF Feature. Journal of Information and Computational Science 10(7), 2159–2167 (2013)CrossRefGoogle Scholar
  15. 15.
    Wolf, J., Burgard, W., Burkhardt, H.: Robust vision-based localization by combining an image-retrieval system with monte carlo localization. Transactions on Robotics 21(2), 208–216 (2005)CrossRefGoogle Scholar
  16. 16.
    Ostafew, C.J., Schoellig, A.P., Barfoot, T.D.: Visual teach and repeat, repeat, repeat: Iterative Learning Control to improve mobile robot path tracking in challenging outdoor environments. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 176–181 (November 2013)Google Scholar
  17. 17.
    Ok, K., Ta, D., Dellaert, F.: Vistas and wall-floor intersection features-enabling autonomous flight in man-made environments. In: Workshop on Visual Control of Mobile Robots (ViCoMoR): IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)Google Scholar
  18. 18.
    Augustine, M., Ortmeier, F., Mair, E., Burschka, D., Stelzer, A., Suppa, M.: Landmark-Tree map: A biologically inspired topological map for long-distance robot navigation. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 128–135 (2012)Google Scholar
  19. 19.
    Ni, K., Kannan, A., Criminisi, A., Winn, J.: Epitomic location recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(12), 2158–2167 (2009)CrossRefGoogle Scholar
  20. 20.
    Cadena, C., McDonald, J., Leonard, J., Neira, J.: Place recognition using near and far visual information. In: Proceedings of the 18th IFAC World Congress (2011)Google Scholar
  21. 21.
    Matsumoto, Y., Inaba, M., Inoue, H.: Visual navigation using view-sequenced route representation. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, vol. 1, pp. 83–88 (April 1996)Google Scholar
  22. 22.
    Faigl, J., Krajník, T., Vonásek, V., Preucil, L.: Surveillance planning with localization uncertainty for uavs. In: 3rd Israeli Conference on Robotics, Ariel (2010)Google Scholar
  23. 23.
    Krajník, T., Nitsche, M., Faigl, J., Vank, P., Saska, M., Peuil, L., Duckett, T., Mejail, M.: A practical multirobot localization system. Journal of Intelligent and Robotic Systems, 1–24 (2014)Google Scholar
  24. 24.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artificial Intelligence 128, 99–141 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Matías Nitsche
    • 1
  • Taihú Pire
    • 1
  • Tomáš Krajník
    • 2
  • Miroslav Kulich
    • 3
  • Marta Mejail
    • 1
  1. 1.Laboratory of Robotics and Embedded Systems, Computer Science Department, Faculty of Exact and Natural SciencesUniversity of Buenos AiresArgentina
  2. 2.Lincoln Centre for Autonomous Systems, School of Computer ScienceUniversity of LincolnUK
  3. 3.Intelligent and Mobile Robotics Group, Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in PragueCzech Republic

Personalised recommendations