Design of a Multi-purpose Low-Cost Mobile Robot for Research and Education

  • Sol Pedre
  • Matías Nitsche
  • Facundo Pessagc
  • Javier Caccavelli
  • Pablo De Cristóforis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8717)


Mobile robots are commonly used for research and education. Although there are several commercial mobile robots available for these tasks, they are often costly, do not always meet the characteristics needed for certain applications and are very difficult to adapt because they have proprietary software and hardware. In this paper, we present the design principles, and describe the development and applications of a mobile robot called ExaBot. Our main goal was to obtain a single multi-purpose low-cost robot -more than ten times cheaper than commercially available platforms- that can be used not only for research, but also for education and public outreach activities. The body of the ExaBot, its sensors, actuators, processing units and control board are described in detail. The software and printed circuit board developed for this project are open source to allow the robotics community to use and upgrade the current version. Finally, different configurations of the ExaBot are presented, showing several applications that fulfill the requirements this robotic platform was designed for.


Mobile Robot Print Circuit Board Proportional Integrative Derivative Robotic Platform Control Board 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adept Mobile Robotics: Pioneer 2-DX and 3-DX (2013)Google Scholar
  2. 2.
    K-team corporation: Khepera, Khepera II and Khepera III (2013)Google Scholar
  3. 3.
    Garage, W.: Turtlebot (2011)Google Scholar
  4. 4.
    McLurkin, J., Rykowski, J., John, M., Kaseman, Q., Lynch, A.: Using multi-robot systems for engineering education: Teaching and outreach with large numbers of an advanced, low-cost robot. IEEE Transactions on Education 56(1), 24–33 (2013)CrossRefGoogle Scholar
  5. 5.
    Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot system for collective behaviors. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3293–3298 (2012)Google Scholar
  6. 6.
    Benitti, F.B.V.: Exploring the educational potential of robotics in schools: A systematic review. Computers & Education 58(3), 978–988 (2012)CrossRefGoogle Scholar
  7. 7.
    Gonzalez-Gomez, J., Valero-Gomez, A., Prieto-Moreno, A., Abderrahim, M.: A new open source 3d-printable mobile robotic platform for education. In: Advances in Autonomous Mini Robots, pp. 49–62. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    RoboticsConnections: Traxster Kit (August 2012)Google Scholar
  9. 9.
    Bräunl, T.: Embedded Robotics - Mobile Robot Design and Applications with Embedded Systems, 2nd edn. Springer (2006)Google Scholar
  10. 10.
    De Cristóforis, P., Nitsche, M., Krajník, T., Mejail, M.: Real-time monocular image-based path detection. Journal of Real-Time Image Processing, 1–14 (2013)Google Scholar
  11. 11.
    De Cristóforis, P.: Vision-based mobile robot system for monocular navigation in indoor/outdoor environments. PhD thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (2013)Google Scholar
  12. 12.
    Piré, T., de Cristóforis, P., Nitsche, M., Berlles, J.J.: Stereo vision obstacle avoidance using disparity and elevation maps. In: IEEE RAS Summer School on Robot Vision and Applications (2012)Google Scholar
  13. 13.
    Gonzalez, S., González, E.: Smartphones como Unidad de Sensado y Procesamiento para la Localización de Robots Móviles Utilizando Odometría Visual Monocular. Master’s thesis, Universidad de Buenos Aires (2013)Google Scholar
  14. 14.
    Caccavelli, J., Pedre, S., de Cristóforis, P., Katz, A., Bendersky, D.: A New Programming Interface for Educational Robotics. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. CCIS, vol. 161, pp. 68–77. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    De Cristóforis, P., Pedre, S., Nitsche, M., Fischer, T., Pessacg, F., Di Pietro, C.: A Behavior-Based Approach for Educational Robotics Activities. IEEE Transactions on Education 56(1), 61–66 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sol Pedre
    • 1
  • Matías Nitsche
    • 2
  • Facundo Pessagc
    • 2
  • Javier Caccavelli
    • 2
  • Pablo De Cristóforis
    • 2
  1. 1.Centro Atómico BarilocheComisión Nacional de Energa AtómicaArgentina
  2. 2.Departamento de Computación, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresArgentina

Personalised recommendations