Advertisement

50 Shades of Rule Composition

From Chemical Reactions to Higher Levels of Abstraction
  • Jakob Lykke Andersen
  • Christoph Flamm
  • Daniel Merkle
  • Peter F. Stadler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8738)

Abstract

Graph rewriting has been applied quite successfully to model chemical and biological systems at different levels of abstraction. A particularly powerful feature of rule-based models that are rigorously grounded in category theory, is, that they admit a well-defined notion of rule composition, hence, provide their users with an intrinsic mechanism for compressing trajectories and coarse grained representations of dynamical aspects. The same formal framework, however, also allows the detailed analysis of transitions in which the final and initial states are known, but the detailed stepwise mechanism remains hidden. To demonstrate the general principle we consider here how rule composition is used to determine accurate atom maps for complex enzyme reactions. This problem not only exemplifies the paradigm but is also of considerable practical importance for many down-stream analyses of metabolic networks and it is a necessary prerequisite for predicting atom traces for the analysis of isotope labelling experiments.

Keywords

Transformation Rule Rule Composition Identity Rule Common Subgraph Context Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fontana, W., Buss, L.W.: What would be conserved if “the tape were played twice”? Proc. Natl. Acad. Sci. USA 91, 757–761 (1994)CrossRefGoogle Scholar
  2. 2.
    Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  3. 3.
    Danos, V.: Formal molecular biology. Theor. Comp. Sci. 325, 69–110 (2004)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Graph theory for rule-based modeling of biochemical networks. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 89–106. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Păun, G.: Computing with membranes. J. Comp. Syst. Sci. 61, 108–143 (2000)CrossRefMATHGoogle Scholar
  6. 6.
    Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Arnold, C., Stadler, P.F., Prohaska, S.J.: Chromatin computation: Epigenetic inheritance as a pattern reconstruction problem. J. Theor. Biol. 336, 61–74 (2013)CrossRefGoogle Scholar
  8. 8.
    Hlavacek, W., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci. STKE 6, 334–336 (2006)Google Scholar
  9. 9.
    Sekar, J.A., Faeder, J.R.: Rule-based modeling of signal transduction: a primer. Methods Mol. Biol. 880, 139–218 (2012)CrossRefGoogle Scholar
  10. 10.
    Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1990, pp. 81–94. Assoc. Computing Machinery, New York (1990)Google Scholar
  11. 11.
    Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43, 1085–1093 (2003)CrossRefGoogle Scholar
  12. 12.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-Walsh, C., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-based models. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012). Leibniz International Proceedings in Informatics (LIPIcs), vol. 18, pp. 276–288 (2012)Google Scholar
  13. 13.
    Beck, M., Benkö, G., Eble, G., Flamm, C., Müller, S., Stadler, P.F.: Graph grammars as models for the evolution of developmental pathways. In: Schaub, H., Detje, F., Brüggemann, U. (eds.) The Logic of Artificial Life: Abstracting and Synthesizing the Principles of Living Systems, pp. 8–15. IOS Press, Akademische Verlagsgesellschaft, Berlin (2004)Google Scholar
  14. 14.
    Sauer, U.: Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62 (2006)CrossRefGoogle Scholar
  15. 15.
    Zamboni, N.: 13C metabolic flux analysis in complex systems. Curr. Opin. Biotech. 22, 103–108 (2011)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Durot, M., Bourguignon, P.Y., Schachter, V.: Genome-scale models of bacterial metabolisn: reconstruction and applications. FEMS Microbiol. Rev. 33, 164–190 (2009)CrossRefGoogle Scholar
  17. 17.
    Feist, A.M., Herrgård, M.J., Thiele, I., Reed, J.L., Palsson, B.Ø.: Reconstruction of biochemical networks in microorganisms. Nature Rev. Microbiol. 7, 129–143 (2009)CrossRefGoogle Scholar
  18. 18.
    Holliday, G.L., Bartlett, G.J., Almonacid, D.E., O’Boyle, N.M., Murray-Rust, P., Thornton, J.M., Mitchell, J.B.O.: MACiE: a database of enzyme reaction mechanisms. Bioinformatics 21, 4315–4316 (2005)CrossRefGoogle Scholar
  19. 19.
    Holliday, G.L., Andreini, C., Fischer, J.D., Rahman, S.A., Almonacid, D.E., Williams, S.T., Pearson, W.R.: MACiE: exploring the diversity of biochemical reactions. Nucleic Acids Research 40, D783–D789 (2012)Google Scholar
  20. 20.
    Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Inferring chemical reaction patterns using graph grammar rule composition. J. Syst. Chem. 4(4) (2013)Google Scholar
  21. 21.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM, New York (1971)CrossRefGoogle Scholar
  22. 22.
    Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)CrossRefGoogle Scholar
  23. 23.
    Weininger, D., Weininger, A., Weininger, J.L.: SMILES 2. Algorithm for Generation of Unique SMILES Notation. J. Chem. Inf. Comput. Sci. 29(2), 97–101 (1989)CrossRefGoogle Scholar
  24. 24.
    Atanasov, B.P., Mustafi, D., Makinen, M.W.: Protonation of the beta-lactam nitrogen is the trigger event in the catalytic action of class A beta-lactamases. Proc. Natl. Acad. Sci. 97(7), 3160–3165 (2000)Google Scholar
  25. 25.
    Bar-Even, A., Flamholz, A., Noor, E., Milo, R.: Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat. Chem. Biol. 8(6), 509–517 (2012)CrossRefGoogle Scholar
  26. 26.
    Entner, N., Doudoroff, M.: Glucose and gluconic acid oxidation of pseudomonas saccharophila. J. Biol. Chem. 196, 853–862 (1952)Google Scholar
  27. 27.
    Borodina, I., Schöller, C., Eliasson, A., Nielsen, J.: Metabolic network analysis of streptomyces tenebrarius, a streptomyces species with an active entner-doudoroff pathway. Appl. Environ. Microbiol. 71(5), 2294–2302 (2005)CrossRefGoogle Scholar
  28. 28.
    Romano, A.H., Conway, T.: Evolution of carbohydrate metabolic pathways. Res. Microbiol. 147(6/7), 448–455 (1996)CrossRefGoogle Scholar
  29. 29.
    Stettner, A.I., Segré, D.: The cost of efficiency in energy metabolism. PNAS 110(24), 9629–9630 (2013)CrossRefGoogle Scholar
  30. 30.
    Flamholz, A., Noor, E., Bar-Even, A., Liebmeister, W., Milo, R.: Glycolytic stratewgy as a tradeoff between energy yield and protein cost. PNAS 110(24), 10039–10044 (2013)CrossRefGoogle Scholar
  31. 31.
    Benner, S., Kim, H., Ricardo, A.: Planetary organic chemistry and the origins of biomolecules. Cold Spring Harb. Perspect. Biol. 2(7), a003467 (2010)Google Scholar
  32. 32.
    Breslow, R.: On the mechanism of the formose reaction. Tetrahedron Letters 1(21) (1959)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jakob Lykke Andersen
    • 1
  • Christoph Flamm
    • 2
  • Daniel Merkle
    • 1
  • Peter F. Stadler
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkDenmark
  2. 2.Institute for Theoretical ChemistryUniversity of ViennaAustria
  3. 3.Department of Computer Science, and Interdisciplinary Center for BioinformaticsBioinformatics GroupLeipzigGermany
  4. 4.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  5. 5.Fraunhofer Institute for Cell Therapy and ImmunologyLeipzigGermany
  6. 6.Center for Non-coding RNA in Technology and HealthUniversity of CopenhagenDenmark
  7. 7.Santa Fe InstituteUSA

Personalised recommendations