Advertisement

Completing SBGN-AF Networks by Logic-Based Hypothesis Finding

  • Yoshitaka Yamamoto
  • Adrien Rougny
  • Hidetomo Nabeshima
  • Katsumi Inoue
  • Hisao Moriya
  • Christine Froidevaux
  • Koji Iwanuma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8738)

Abstract

This study considers formal methods for finding unknown interactions of incomplete molecular networks using microarray profiles. In systems biology, a challenging problem lies in the growing scale and complexity of molecular networks. Along with high-throughput experimental tools, it is not straightforward to reconstruct huge and complicated networks using observed data by hand. Thus, we address the completion problem of our target networks represented by a standard markup language, called SBGN (in particular, Activity Flow). Our proposed method is based on logic-based hypothesis finding techniques; given an input SBGN network and its profile data, missing interactions can be logically generated as hypotheses by the proposed method. In this paper, we also show empirical results that demonstrate how the proposed method works with a real network involved in the glucose repression of S. cerevisiae.

Keywords

completion hypothesis finding SBGN glucose repression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutsu, T., Tamura, T., Horimoto, K.: Completing networks using observed data. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS (LNAI), vol. 5809, pp. 126–140. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Christensen, T.S., Oliveira, A.P., Nielsen, J.: Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae. BMC Systems Biology 3 (2009), doi:10.1186/1752-0509-3-7Google Scholar
  3. 3.
    Demolombe, R., Farinas del Cerro, L., Obeid, N.: A logical model for metabolic networks with inhibition. In: Proc. of Int. Conf. on Bioinformatics and Computational Biology (2013)Google Scholar
  4. 4.
    Doncescu, A., Inoue, K., Pradine, A.: MicroRNA analysis by hypothesis finding technique. In: Late breaking Papers from the 22nd Int. Conf. on Inductive Logic Programming (ILP 2012), CEUR, vol. 975, pp. 26–37 (2013)Google Scholar
  5. 5.
    Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56, 301–353 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Inoue, K., Doncescu, A., Nabeshima, H.: Completing causal networks by meta-level abduction. Machine Learning 91, 239–277 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Iwanuma, K., Inoue, K., Satoh, K.: Completeness of pruning methods for consequence finding procedure SOL. In: Proc. of the 3rd worksh. on First-order Theorem Proving (FTP 2000), pp. 89–100 (2000)Google Scholar
  8. 8.
    Karlebach, G., Shamir, R.: Constructing logical models of gene regulatory networks by integrating transcription factor-DNA interactions with expression data: an entropy-based approach. Computational Biology 19, 30–41 (2012)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: Proc. of the 25th Conf. on Uncertainty in Artificial Intelligence (UAI), pp. 303–312 (2009)Google Scholar
  10. 10.
    Rougny, A., Froidevaux, C., Yamamoto, Y., Inoue, K.: Translating the SBGN-AF language into logics to analyze signalling networks. In: Proc. of Int. Worksh. on LNMR, CORR, vol. 975, pp. 53–64 (2013)Google Scholar
  11. 11.
    Rougny, A., Froidevaux, C., Yamamoto, Y., Inoue, K.: Analyzing SBGN-AF networks using normal logic programs. In: Inoue, K., Farinas, L. (eds.) Logical Modeling of Biological Systems, IStE-Ltd. (to appear, 2014)Google Scholar
  12. 12.
    Le Novére, N., et al.: The systems biology graphical notation. Nature Biotechnology 27, 735–741 (2009)CrossRefGoogle Scholar
  13. 13.
    Lewis, D.: Causation as influence. Philosophy 97, 182–197 (2000)Google Scholar
  14. 14.
    Mi, H., Schreiber, F., Le Novére, N., Moodie, S., Sorokin, A.: Systems biology graphical notation: activity flow language level 1. Nature Proceedings, 713 (2009)Google Scholar
  15. 15.
    Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press (2000)Google Scholar
  16. 16.
    Muggleton, S.H.: Inverse entailment and Progol. New Generation Computing 13, 245–286 (1995)CrossRefGoogle Scholar
  17. 17.
    Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: An automated deduction system for consequence finding. AI Communications 23, 183–203 (2010)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Nakajima, N., Tamura, T., Yamanishi, Y., Horimoto, K., Akutsu, T.: Network completion using dynamic programming and least-squares fitting. The Scientific World Journal (2012), doi:10.1100/2012/957620Google Scholar
  19. 19.
    Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  20. 20.
    Smet, R.D., Marchal, K.: Advantages and limitations of current network inference methods. Nature Reviews Microbiology 8, 717–729 (2010)Google Scholar
  21. 21.
    Tamaddoni-Nezhad, A., Chaleil, R., Muggleton, S.: Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning 65, 209–230 (2006)CrossRefGoogle Scholar
  22. 22.
    Westergaard, S.L., Oliveira, A.P., Bro, C., Olsson, L., Nielsen, J.: A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnology and Bioengineering 96, 134–145 (2007)CrossRefGoogle Scholar
  23. 23.
    Whelan, K., Ray, O., King, R.D.: Representation, simulation, and hypothesis generation in graph and logical models of biological networks. In: Castrillo, J.I., Oliver, S.G. (eds.) Yeast Systems Biology, ch. 26, pp. 465–482 (2011)Google Scholar
  24. 24.
    Yamamoto, Y., Inoue, K., Doncescu, A.: Integrating abduction and induction in biological inference using CF-induction. In: Lodhi, H., Muggleton, S. (eds.) Elements of Computational Systems Biology, ch. 9, pp. 213–234 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yoshitaka Yamamoto
    • 1
  • Adrien Rougny
    • 2
  • Hidetomo Nabeshima
    • 1
  • Katsumi Inoue
    • 3
  • Hisao Moriya
    • 4
  • Christine Froidevaux
    • 2
  • Koji Iwanuma
    • 1
  1. 1.University of YamanashiKofu-shiJapan
  2. 2.Laboratoire de Recherche en Informatique (LRI), CNRS UMR 8623Université Paris SudFrance
  3. 3.National Institute of InformaticsChiyoda-kuJapan
  4. 4.RCISOkayama UniversityOkayamaJapan

Personalised recommendations