A Logical Framework for Systems Biology

  • Elisabetta de Maria
  • Joëlle Despeyroux
  • Amy P. Felty
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8738)


We propose a novel approach for the formal verification of biological systems based on the use of a modal linear logic. We show how such a logic can be used, with worlds as instants of time, as an unified framework to encode both biological systems and temporal properties of their dynamic behaviour. To illustrate our methodology, we consider a model of the P53/Mdm2 DNA-damage repair mechanism. We prove several properties that are important for such a model to satisfy and serve to illustrate the promise of our approach. We formalize the proofs of these properties in the Coq Proof Assistant, with the help of a Lambda Prolog prover for partial automation of the proofs.


Temporal Logic Linear Logic Logical Framework Sequent Calculus Boolean Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Belta, C., Ivančić, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. In: Coq’Art: The Calculus of Inductive Constructions. Springer (2004)Google Scholar
  3. 3.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. In: Zelkowitz, M. (ed.) Highly Dependable Software. Advances in Computers, vol. 58, pp. 117–148. Elsevier (2003)Google Scholar
  4. 4.
    Bozzano, M.: A Logic-Based Approach to Model Checking of Parameterized and Infinite-State Systems. Ph.D. thesis, DISI, Università di Genova (2002)Google Scholar
  5. 5.
    Campagna, D., Piazza, C.: Hybrid automata in systems biology: How far can we go? Electronic Notes in Theoretical Computer Science 229(1), 93–108 (2009)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical framework II: Examples and applications. Tech. Rep. CMU-CS-02-102, Carnegie Mellon University (2003)Google Scholar
  7. 7.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biochemical interaction networks. Theoretical Computer Science 325(1), 25–44 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chaudhuri, K., Despeyroux, J.: A hybrid linear logic for constrained transition systems with applications to molecular biology. Tech. Rep. inria-00402942, INRIA-HAL (October 2013)Google Scholar
  9. 9.
    Ciliberto, A., Novák, B., Tyson, J.J.: Steady states and oscillations in the p53/Mdm2 network. Cell Cycle 4(3), 488–493 (2005)CrossRefGoogle Scholar
  10. 10.
    Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic model verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Clarke, J.E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (1999)Google Scholar
  12. 12.
    Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-efficient algorithms for the verification of temporal properties. Formal Methods in System Design 1(2/3), 275–288 (1992)CrossRefGoogle Scholar
  13. 13.
    Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Despeyroux, J., Chaudhuri, K.: A hybrid linear logic for constrained transition systems. To Appear in Types for Proofs and Programs, Post-Proceedings of TYPES 2013. LIpIcs (Leibniz International Proceedings in Informatics) (2014)Google Scholar
  15. 15.
    Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4(2), 64–73 (2004)CrossRefGoogle Scholar
  16. 16.
    Felty, A.: Implementing tactics and tacticals in a higher-order logic programming language. Journal of Automated Reasoning 11(1), 43–81 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Felty, A.P., Momigliano, A.: Hybrid: A definitional two-level approach to reasoning with higher-order abstract syntax. Journal of Automated Reasoning 48(1), 43–105 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Gentzen, G.: Investigations into logical deductions. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland Publishing Co., Amsterdam (1969)Google Scholar
  19. 19.
    Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Journal of Information and Computation 110(2), 327–365 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Hofestädt, R., Thelen, S.: Quantitative modeling of biochemical networks. In: Silico Biology, vol. 1, pp. 39–53. IOS Press (1998)Google Scholar
  23. 23.
    Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley Professional (2003)Google Scholar
  24. 24.
    de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bulletin of Mathematical Biology 66(2), 301–340 (2004)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Maria, E.D., Fages, F., Rizk, A., Soliman, S.: Design, optimization and predictions of a coupled model of the cell cycle, circadian clock, DNA repair system, irinotecan metabolism and exposure control under temporal logic constraints. Theoretical Computer Science 412(21), 2108–2127 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Miller, D.: The π-calculus as a theory in linear logic: Preliminary results. In: Lamma, E., Mello, P. (eds.) ELP 1992. LNCS, vol. 660, pp. 242–265. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  27. 27.
    Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge University Press (2012)Google Scholar
  28. 28.
    Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. In: BioConcur: Workshop on Concurrent Models in Molecular Biology. Electronic Notes in Theoretical Computer Science (2004)Google Scholar
  29. 29.
    Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in metabolic pathways. In: First International Conference on Intelligent Systems for Molecular Biology, pp. 328–336. AAAI Press (1993)Google Scholar
  30. 30.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: An abstraction for biological compartments. Theoretical Computer Science 325(1), 141–167 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Sixth Pacific Symposium on Biocomputing, pp. 459–470 (2001)Google Scholar
  32. 32.
    Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42(3), 563–585 (1973)CrossRefGoogle Scholar
  33. 33.
    Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks—I. Biological Role of Feedback Loops and Practical Use of the Concept of the Loop-Characteristic State. Bulletin of Mathematical Biology 57(2), 247–276 (1995)zbMATHGoogle Scholar
  34. 34.
    Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1/2), 72–99 (1983)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Elisabetta de Maria
    • 1
  • Joëlle Despeyroux
    • 2
  • Amy P. Felty
    • 3
  1. 1.Laboratoire I3SUniversity of Nice - Sophia-AntipolisSophia-AntipolisFrance
  2. 2.Laboratoire I3S, UNSINRIA and CNRSSophia-AntipolisFrance
  3. 3.School of Electrical Engineering and Computer ScienceUniversity of Ottawa OttawaCanada

Personalised recommendations