Advertisement

The Method of Dynamic Factors in Bioindication and Phytoremediation

  • Edita Baltrėnaitė
  • Pranas Baltrėnas
  • Donatas Butkus
  • Arvydas Lietuvninkas
Chapter

Abstract

Bioindication and phytoremediation are applied aspects of the accumulation of chemical elements in plants. The fields of bioindication and phytoremediation have required evaluating the processes of the absorption of chemical elements by plants, in order to be able to compare plants by their capacity to absorb chemical elements and to compare the chemical elements by their possibilities to get into plants. However, besides the biochemical viewpoint towards getting of chemical elements into plants, the biogeochemical attitude is also of great importance. The latter is concentrated on the link between a plant and its environment, firstly the soil.

In order to compare the changes in the process of uptake of chemical elements by different plants (by evaluating the geochemical changes in the area), to evaluate the influence of soil modification on chemical elements’ participation in the plants’ metabolism, and to provide a quantitative evaluation of the phytoremediation efficiency during a specific period of time, a quantitative method of evaluation is presented in this paper; the method is based on the dynamic factors of bioaccumulation, biophilicity, translocation, and phytoremediation.

Keywords

Chemical elements Bioindication Phytoremediation Dynamic factors 

References

  1. Antoniadis V, Tsadilas CD, Samaras V, Sgouras J (2006) Availability of heavy metals applied to soil through sewage sludge. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Boca Raton, FLGoogle Scholar
  2. Augustaitis A, Bytnerowicz A (2008) Contribution of ambient ozone to Scots pine defoliation and reduced growth in the Central European forests: a Lithuanian case study. Environ Pollut 155(3):436–445CrossRefPubMedGoogle Scholar
  3. Augustaitis A, Augustaitienė I, Cinga G, Mažeika J, Deltuvas R, Juknys R, Vitas A (2007a) Did the ambient ozone affect stem increment of Scots pines (Pinus sylvestris L.) on territories under regional pollution load? Step III of Lithuanian studies. ScientificWorldJournal 7(Suppl 1):58–66CrossRefPubMedGoogle Scholar
  4. Augustaitis A, Augustaitienė I, Kliučius A, Girgždienė R, Šopauskienė D (2007b) Contribution of ambient ozone to changes in Scots pine defoliation. Step II of Lithuanian studies. ScientificWorldJournal 7(Suppl 1):47–57CrossRefPubMedGoogle Scholar
  5. Baker AJM (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  6. Baltrėnaitė E, Butkus D (2006) Heavy metals in Pinus sylvestris L. wood infected with Heterobasidion annosum. In: 1st scientific meeting of WG1 Root to shoot translocation of pollutants and nutrients of COST Action 859 in 22–24 June 2006, in Santiago de Compostela, Spain. Poster presentationGoogle Scholar
  7. Baltrėnaitė E, Butkus D (2007) Modelling of Cu, Ni, Zn, Mn and Pb transport from soil to seedlings of coniferous and leafy trees. J Environ Eng Landsc Manag 15(4):200–207Google Scholar
  8. Baltrėnaitė E, Butkus D, Booth CA (2010) Comparison of three tree-ring sampling methods for trace metal analysis. J Environ Eng Landsc Manag 18(3):170–178CrossRefGoogle Scholar
  9. Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2012) Use of dynamic factors to assess metal uptake and transfer in plants – example of trees. Water Air Soil Pollut 223:4297–4306CrossRefGoogle Scholar
  10. Baltrėnaitė E, Baltrėnas P, Lietuvninkas A, Šerevičienė V, Zuokaitė E (2014) Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environ Sci Pollut Res. doi: 10.1007/s11356-013-2046-6 Google Scholar
  11. Baltrėnas P, Vaitkutė D (2011) Investigation and evaluation of copper and zinc concentration tendencies in Pinus sylvestris L. tree-rings. J Environ Eng Landsc Manag 19(4):278–286CrossRefGoogle Scholar
  12. Baltrėnas P, Ignatavičius G, Idzelis R, Greičiūtė K (2005) Aplinkos apsauga kariniuose poligonuose [Environmental Protection in Military Grounds]. Technika, Vilnius, 302 pGoogle Scholar
  13. Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB, Cambridge, 380 pGoogle Scholar
  14. Butkus D, Baltrėnaitė E (2007a) Transport of heavy metals from soil to Pinus sylvestris L. and Betula pendula trees. Ekologija 53(1):29–36Google Scholar
  15. Butkus D, Baltrėnaitė E (2007b) Accumulation of heavy metals in tree seedlings from soil amended with sewage sludge. Ekologija 53(4):68–76Google Scholar
  16. Butkus D, Pliopaitė Bataitienė I, Bataitis T (2008) 90Sr kaupimosi paprastosios pušies (Pinus sylvestris L.) medienoje tyrimas. J Environ Eng Landsc Manag 16(3):121–127CrossRefGoogle Scholar
  17. Chamberlain AC (1983) Fallout of lead and uptake by crops. Atmos Environ 17:693–706CrossRefGoogle Scholar
  18. Cook E, Kairiūkštis L (eds) (1999) Methods of dendrochronology. Applications in the environmental sciences. Kluwer, Dordrecht, 394 pGoogle Scholar
  19. Dobrovolsky VV (2008) Geochemical geography. Humanit VLADOS, Moscow, 207 p (in Russian)Google Scholar
  20. Gál J, Hursthhouse A, Tatner P, Steward F, Welton R (2008) Cobalt and secondary poisoning in the terrestrial food chain: data review and research gaps to support risk assessment. Environ Int 34:821–838CrossRefPubMedGoogle Scholar
  21. Harju L, Saarela KE, Rajander J, Lill JO, Lindroos A, Heselius SJ (2002) Environmental monitoring of trace elements in bark of Scots pine by thick – target PIXE. Nucl Instrum Methods Phys Res 189:163–167CrossRefGoogle Scholar
  22. Jhee EM, Boyd RS, Eubanks MD (2005) Nickel hyperaccumulation as an elemental defence of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode. New Phytol 168:331–343CrossRefPubMedGoogle Scholar
  23. Juknys R, Venclovienė J, Stravinskienė V, Augustaitis A, Bartkevičius E (2003) Scots pine (Pinus sylvestris L.) growth and condition in a polluted environment: from decline to recovery. Environ Pollut 125(2):205–212CrossRefPubMedGoogle Scholar
  24. Juknys R, Venclovienė J, Jurkonis N, Bartkevičius E, Šepetienė J (2006) Relation between individual tree mortality and tree characteristics in a polluted and non-polluted environment. Environ Monit Assess 121(1–3):519–542CrossRefPubMedGoogle Scholar
  25. Kabata-Pendias A (ed) (2010) Trace elements in soil and plants, 4th edn. CRC, Boca Raton, FLGoogle Scholar
  26. Kovalevsky AL (1987) Biogeochemical exploration for mineral deposits. VNU, Utrecht, 224 pGoogle Scholar
  27. Kupčinskienė E (2011) Aplinkos fitoindikacija [Environmental phytoindication]. Kaunas 752 pGoogle Scholar
  28. Lietuvninkas A (2012) Aplinkos geochemija [Environmental geochemistry]. Technika, Vilnius, 309 pCrossRefGoogle Scholar
  29. Machado A, Šlejkovec Z, Van Elteren JT, Freitas MC (2006) Arsenic speciation in transplanted lichens and tree bark in the framework of a biomonitoring scenario. J Atmos Chem 53:237–249CrossRefGoogle Scholar
  30. Markert B, Wunschmann S, Baltrėnaitė E (2012) Aplinkos stebėjimo naujovės. Bioindikatoriai ir biomonitoriai: apibrėžtys, strategijos ir taikymas [Innovative observation of the environment: bioindicators and biomonitors: definitions, strategies and applications]. J Environ Eng Landsc Manag 20(3):221–239. doi: 10.3846/16486897. 2011.633338 CrossRefGoogle Scholar
  31. Marozas V, Armolaitis K, Aleinikovienė J (2013) Changes of ground vegetation, soil chemical properties and microbiota following the surface fires in Scots pine forests. J Environ Eng Landsc Manag 21(1):67–75CrossRefGoogle Scholar
  32. Milburn JA (1979) Water flow in plants. Longman, LondonGoogle Scholar
  33. Mingorance MD, Valdes B, Rossini Oliva S (2007) Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int 33:514–520CrossRefPubMedGoogle Scholar
  34. Navasaitis M (2008) Dendrologija [Dendrology]. Margi raštai, Vilnius, 856 pGoogle Scholar
  35. Navasaitis M, Ozolinčius R, Smaliukas D, Balevičienė J (2003) Lietuvos dendroflora [Lithuanian Dendroflora]. Lututė, Kaunas, 576 pGoogle Scholar
  36. Neverova OA, Jagodkina ЕА (2010) Stability of woody plants in the urbanized environment. http://ecotext.ru/58.html (in Russian)
  37. Ozolinčius R, Stakėnas V, Serafinavičiūtė B (2005) Meteorological factors and air pollution in Lithuanian forests: possible effects on tree condition. Environ Pollut 137(3):587–595CrossRefPubMedGoogle Scholar
  38. Perelman AI (1989) Geochemistry. High school, Moscow, 528 p (in Russian)Google Scholar
  39. Pliopaitė Bataitienė I, Butkus D (2010) Investigation of 137Cs and 90Sr transfer from sandy soil to Scots pine (Pinus sylvestris L.) rings. J Environ Eng Landsc Manag 18(4):281–287CrossRefGoogle Scholar
  40. Poschenrieder C, Allué J, Tolra R, Llugany M, Barcelo J (2008) Trace elements and plant secondary metabolism: quality and efficacy of herbal products. Chapter 5. In: Prasad MNV (ed) Trace elements – nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 99–120Google Scholar
  41. Prasad MNV (1997) Trace elements. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, 207 pGoogle Scholar
  42. Prasad MNV (2006) Plants that accumulate and/or exclude toxic trace elements play an important role in phytoremediation. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Boca Raton, FLGoogle Scholar
  43. Prasad MNV, Hagemeyer J (eds) (1999) Heavy metal stress in plants. Springer, Berlin, 401 pGoogle Scholar
  44. Pulford ID, Dickinson NM (2006) Phytoremediation technologies using trees. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Boca Raton, FLGoogle Scholar
  45. Pundytė N, Baltrėnaitė E (2011) Tree bark ability to accumulate metals. In: 14th conference for young researchers “Mokslas – Lietuvos ateitis” [Science – the future of Lithuania], 14 Apr 2011, Vilnius. Poster presentationGoogle Scholar
  46. Pundytė N, Baltrėnaitė E, Pereira P, Paliulis P (2011a) Heavy metals and macronutrients transfer from soil to Pinus sylvestris L. In: 8th international conference environmental engineering, vol I, 19–20 May 2011. Selected papers, pp 308–312Google Scholar
  47. Pundytė N, Baltrėnaitė E, Pereira P, Paliulis D (2011b) Anthropogenic effects on heavy metals and macronutrients accumulation in soil and wood of Pinus sylvestris L. J Environ Eng Landsc Manag 19(1):34–43CrossRefGoogle Scholar
  48. Schulz H, Popp P, Huhn G, Stärk HJ, Schüürmann G (1999) Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. I. Temporal and spatial variations. Sci Total Environ 232:49–55CrossRefPubMedGoogle Scholar
  49. Shaw BP, Prasad MNV, Jha VK, Sahu BB (2006) Detoxification/defense mechanisms in metal-exposed plants. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Boca Raton, FLGoogle Scholar
  50. Stravinskienė V (2010) Medžių būklės stebėsena ir vertinimas Kauno miesto aplinkoje [Monitoring and Evaluation of Tree Condition in the Vicinity of Kaunas City]. J Environ Eng Landsc Manag 18(3):217–225CrossRefGoogle Scholar
  51. Stravinskienė V (2011) Pollution of “Akmenės cementas” vicinity: alkalizing microelements in soil, composition of vegetation species and projection coverage. J Environ Eng Landsc Manag 19(2):130–139CrossRefGoogle Scholar
  52. Stravinskienė V, Dičiūnaitė B (1999) Health condition and dendrochronological study of the lime trees Kaunas City. Baltic Forest 5(2):37–44Google Scholar
  53. Stravinskienė V, Erlickytė-Marčiukaitienė R (2009) Scots pine (Pinus sylvestris L.) radial growth dynamics in forest stands in the vicinity of “Akmenės cementas” plant. J Environ Eng Landsc Manag 17(3):140–147CrossRefGoogle Scholar
  54. Stravinskienė V, Šimatonytė A (2008) Dendrochronological research of Scots pine (Pinus sylvestris L.) growing in Vilnius and Kaunas forest parks. J Environ Eng Landsc Manag 16(2):57–64CrossRefGoogle Scholar
  55. Vaitkutė D, Baltrėnas P (2011) Manganese trends in tree rings of Pinus sylvestris L. monitoring soil chemical changes. In: 8th international conference environmental engineering, vol 1, 19–20 May 2011, selected papers, pp 425–431Google Scholar
  56. Vaitkutė D, Baltrėnaitė E, Booth CA, Fullen MA (2010) Does sewage sludge amendment to soil enhance the development of Silver birch and Scots pine? Hungar Geogr Bull 59(4):393–410Google Scholar
  57. Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464CrossRefPubMedGoogle Scholar
  58. Zimmermann MH, Milburn JA (1982) Transport and storage of water. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12B. Springer, Berlin, pp 135–151Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Edita Baltrėnaitė
    • 1
  • Pranas Baltrėnas
    • 1
  • Donatas Butkus
    • 1
  • Arvydas Lietuvninkas
    • 2
  1. 1.Department of Environmental ProtectionVilnius Gediminas Technical UniversityVilniusLithuania
  2. 2.Department of Mineralogy and GeochemistryNational Research Tomsk State UniversityTomskRussia

Personalised recommendations